Suppr超能文献

利用日常情绪日记和可穿戴传感器数据预测实习医生的抑郁和自杀意念。

Utilizing daily mood diaries and wearable sensor data to predict depression and suicidal ideation among medical interns.

机构信息

Department of Psychiatry, University of Michigan, USA.

Department of Psychiatry, University of Michigan, USA.

出版信息

J Affect Disord. 2022 Sep 15;313:1-7. doi: 10.1016/j.jad.2022.06.064. Epub 2022 Jun 25.

Abstract

BACKGROUND

Intensive longitudinal methods (ILMs) for collecting self-report (e.g., daily diaries, ecological momentary assessment) and passive data from smartphones and wearable sensors provide promising avenues for improved prediction of depression and suicidal ideation (SI). However, few studies have utilized ILMs to predict outcomes for at-risk, non-clinical populations in real-world settings.

METHODS

Medical interns (N = 2881; 57 % female; 58 % White) were recruited from over 300 US residency programs. Interns completed a pre-internship assessment of depression, were given Fitbit wearable devices, and provided daily mood ratings (scale: 1-10) via mobile application during the study period. Three-step hierarchical logistic regressions were used to predict depression and SI at the end of the first quarter utilizing pre-internship predictors in step 1, Fitbit sleep/step features in step 2, and daily diary mood features in step 3.

RESULTS

Passively collected Fitbit features related to sleep and steps had negligible predictive validity for depression, and no incremental predictive validity for SI. However, mean-level and variability in mood scores derived from daily diaries were significant independent predictors of depression and SI, and significantly improved model accuracy.

LIMITATIONS

Work schedules for interns may result in sleep and activity patterns that differ from typical associations with depression or SI. The SI measure did not capture intent or severity.

CONCLUSIONS

Mobile self-reporting of daily mood improved the prediction of depression and SI during a meaningful at-risk period under naturalistic conditions. Additional research is needed to guide the development of adaptive interventions among vulnerable populations.

摘要

背景

从智能手机和可穿戴传感器中收集自我报告(例如,每日日记、生态瞬时评估)和被动数据的密集纵向方法 (ILMs) 为改善抑郁和自杀意念 (SI) 的预测提供了有前途的途径。 然而,很少有研究利用 ILMs 在现实环境中预测处于风险中的非临床人群的结果。

方法

从美国 300 多个居住项目中招募了医学实习生(N=2881;57%为女性;58%为白人)。实习生在实习前完成了抑郁评估,获得了 Fitbit 可穿戴设备,并在研究期间通过移动应用程序每日提供情绪评分(范围:1-10)。使用三步分层逻辑回归来预测第一个季度末的抑郁和 SI,在步骤 1 中使用实习前的预测因子,在步骤 2 中使用 Fitbit 睡眠/步功能,在步骤 3 中使用每日日记情绪特征。

结果

与睡眠和步数相关的被动收集的 Fitbit 特征对抑郁的预测效果微不足道,对 SI 也没有额外的预测效果。然而,每日日记中得出的情绪得分的平均值和变异性是抑郁和 SI 的重要独立预测因子,并且显著提高了模型准确性。

局限性

实习生的工作时间表可能导致睡眠和活动模式与抑郁或 SI 的典型关联不同。SI 测量未捕获意图或严重程度。

结论

在自然条件下,对日常情绪的移动自我报告改善了对风险期间抑郁和 SI 的预测。需要进一步的研究来指导针对弱势人群的适应性干预措施的制定。

相似文献

1
Utilizing daily mood diaries and wearable sensor data to predict depression and suicidal ideation among medical interns.
J Affect Disord. 2022 Sep 15;313:1-7. doi: 10.1016/j.jad.2022.06.064. Epub 2022 Jun 25.
6
Prevention of self-harm and suicide in young people up to the age of 25 in education settings.
Cochrane Database Syst Rev. 2024 Dec 20;12(12):CD013844. doi: 10.1002/14651858.CD013844.pub2.
7
Sleep disorder symptoms and suicidal urges among US Marines seeking suicide treatment: Findings from an intensive daily assessment study.
J Psychiatr Res. 2024 Oct;178:388-396. doi: 10.1016/j.jpsychires.2024.08.040. Epub 2024 Aug 27.
10
Suicidal Ideation in Medicinal Cannabis Patients: A 12-Month Prospective Study.
Arch Suicide Res. 2025 Apr-Jun;29(2):407-421. doi: 10.1080/13811118.2024.2356615. Epub 2024 Jul 24.

引用本文的文献

2
Machine Learning Models to Identify Individuals With Imminent Suicide Risk Using a Wearable Device: A Pilot Study.
Psychiatry Investig. 2025 Feb;22(2):156-166. doi: 10.30773/pi.2024.0257. Epub 2025 Feb 17.
4
A systematic review on passive sensing for the prediction of suicidal thoughts and behaviors.
Npj Ment Health Res. 2024 Sep 23;3(1):42. doi: 10.1038/s44184-024-00089-4.
6
Effects of frequent assessments on the severity of suicidal thoughts: an ecological momentary assessment study.
Front Public Health. 2024 May 17;12:1358604. doi: 10.3389/fpubh.2024.1358604. eCollection 2024.
7
Smartphone keyboard dynamics predict affect in suicidal ideation.
NPJ Digit Med. 2024 Mar 1;7(1):54. doi: 10.1038/s41746-024-01048-1.
8
The effect of cognitive behavioral therapy text messages on mood: A micro-randomized trial.
PLOS Digit Health. 2024 Feb 21;3(2):e0000449. doi: 10.1371/journal.pdig.0000449. eCollection 2024 Feb.

本文引用的文献

1
Use of Ecological Momentary Assessment to Study Suicidal Thoughts and Behavior: a Systematic Review.
Curr Psychiatry Rep. 2021 May 18;23(7):41. doi: 10.1007/s11920-021-01255-7.
2
The Use of Intensive Longitudinal Methods in Research on Suicidal Thoughts and Behaviors: A Systematic Review.
Arch Suicide Res. 2022 Jul-Sep;26(3):1007-1021. doi: 10.1080/13811118.2021.1903635. Epub 2021 Apr 1.
3
Ecological momentary assessment as a measurement tool in depression trials.
J Psychiatr Res. 2021 Apr;136:256-264. doi: 10.1016/j.jpsychires.2021.02.012. Epub 2021 Feb 14.
5
Monitoring Changes in Depression Severity Using Wearable and Mobile Sensors.
Front Psychiatry. 2020 Dec 18;11:584711. doi: 10.3389/fpsyt.2020.584711. eCollection 2020.
7
The utility of smartphone-based, ecological momentary assessment for depressive symptoms.
J Affect Disord. 2020 Sep 1;274:602-609. doi: 10.1016/j.jad.2020.05.116. Epub 2020 May 25.
8
Instability of Suicidal Ideation in Patients Hospitalized for Depression: An Exploratory Study Using Smartphone Ecological Momentary Assessment.
Arch Suicide Res. 2022 Jan-Mar;26(1):56-69. doi: 10.1080/13811118.2020.1783410. Epub 2020 Jul 11.
10
Detecting suicidal thoughts: The power of ecological momentary assessment.
Depress Anxiety. 2021 Jan;38(1):8-16. doi: 10.1002/da.23043. Epub 2020 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验