Suppr超能文献

均值参数化的康威-麦克斯韦-泊松模型的有限混合模型。

Finite mixtures of mean-parameterized Conway-Maxwell-Poisson models.

作者信息

Zhan Dongying, Young Derek S

机构信息

Dr. Bing Zhang Department of Statistics, University of Kentucky, 725 Rose Street, Lexington, KY 40536-0082 USA.

出版信息

Stat Pap (Berl). 2023 May 19:1-24. doi: 10.1007/s00362-023-01452-x.

Abstract

UNLABELLED

For modeling count data, the Conway-Maxwell-Poisson (CMP) distribution is a popular generalization of the Poisson distribution due to its ability to characterize data over- or under-dispersion. While the classic parameterization of the CMP has been well-studied, its main drawback is that it is does not directly model the mean of the counts. This is mitigated by using a mean-parameterized version of the CMP distribution. In this work, we are concerned with the setting where count data may be comprised of subpopulations, each possibly having varying degrees of data dispersion. Thus, we propose a finite mixture of mean-parameterized CMP distributions. An EM algorithm is constructed to perform maximum likelihood estimation of the model, while bootstrapping is employed to obtain estimated standard errors. A simulation study is used to demonstrate the flexibility of the proposed mixture model relative to mixtures of Poissons and mixtures of negative binomials. An analysis of dog mortality data is presented.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s00362-023-01452-x.

摘要

未标注

对于计数数据建模,康威 - 麦克斯韦 - 泊松(CMP)分布是泊松分布的一种流行推广,因为它能够刻画数据的过度离散或不足离散。虽然CMP的经典参数化已得到充分研究,但其主要缺点是它不能直接对计数的均值进行建模。通过使用CMP分布的均值参数化版本可以缓解这一问题。在这项工作中,我们关注的是计数数据可能由亚群体组成的情况,每个亚群体可能具有不同程度的数据离散度。因此,我们提出了均值参数化CMP分布的有限混合模型。构建了一种期望最大化(EM)算法来执行模型的最大似然估计,同时采用自助法来获得估计的标准误差。通过模拟研究来证明所提出的混合模型相对于泊松混合模型和负二项式混合模型的灵活性。还给出了对犬类死亡率数据的分析。

补充信息

在线版本包含可在10.1007/s00362 - 023 - 01452 - x获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dae9/10197059/d29e06bef4a8/362_2023_1452_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验