Suppr超能文献

一种用于有界时间序列数据的康威 - 麦克斯韦 - 泊松 - 二项式自回归(AR(1))模型。

A Conway-Maxwell-Poisson-Binomial AR(1) Model for Bounded Time Series Data.

作者信息

Chen Huaping, Zhang Jiayue, Liu Xiufang

机构信息

School of Mathematics and Statistics, Henan University, Kaifeng 475004, China.

School of Mathematics, Jilin University, Changchun 130012, China.

出版信息

Entropy (Basel). 2023 Jan 7;25(1):126. doi: 10.3390/e25010126.

Abstract

Binomial autoregressive models are frequently used for modeling bounded time series counts. However, they are not well developed for more complex bounded time series counts of the occurrence of exchangeable and dependent units, which are becoming increasingly common in practice. To fill this gap, this paper first constructs an exchangeable Conway-Maxwell-Poisson-binomial (CMPB) thinning operator and then establishes the Conway-Maxwell-Poisson-binomial AR (CMPBAR) model. We establish its stationarity and ergodicity, discuss the conditional maximum likelihood (CML) estimate of the model's parameters, and establish the asymptotic normality of the CML estimator. In a simulation study, the boxplots illustrate that the CML estimator is consistent and the qqplots show the asymptotic normality of the CML estimator. In the real data example, our model takes a smaller AIC and BIC than its main competitors.

摘要

二项自回归模型常用于对有界时间序列计数进行建模。然而,对于可交换和相关单元出现次数的更复杂有界时间序列计数,它们的发展并不完善,而这种情况在实际中越来越普遍。为了填补这一空白,本文首先构建了一个可交换的康威-麦克斯韦-泊松-二项式(CMPB)稀疏算子,然后建立了康威-麦克斯韦-泊松-二项式自回归(CMPBAR)模型。我们建立了它的平稳性和遍历性,讨论了模型参数的条件最大似然(CML)估计,并建立了CML估计量的渐近正态性。在模拟研究中,箱线图表明CML估计量是一致的,QQ图显示了CML估计量的渐近正态性。在实际数据示例中,我们的模型比其主要竞争对手具有更小的AIC和BIC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7539/9857646/139eb4d35784/entropy-25-00126-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验