Suppr超能文献

基于 III 期随机试验结果预测新上市药物在临床实践中的治疗效果。

Predicting Treatment Effects of a New-to-Market Drug in Clinical Practice Based on Phase III Randomized Trial Results.

机构信息

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

Department of Medicine, Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.

出版信息

Clin Pharmacol Ther. 2023 Oct;114(4):853-861. doi: 10.1002/cpt.2983. Epub 2023 Jul 14.

Abstract

Trial results may not be generalizable to target populations treated in clinical practice with different distributions of baseline characteristics that modify the treatment effect. We used outcome models developed with trial data to predict treatment effects in Medicare populations. We used data from the Randomized Evaluation of Long-Term Anticoagulation Therapy trial (RE-LY), which investigated the effect of dabigatran vs. warfarin on stroke or systemic embolism (stroke/SE) among patients with atrial fibrillation. We developed outcome models by fitting proportional hazards models in trial data. Target populations were trial-eligible Medicare beneficiaries who initiated dabigatran or warfarin in 2010-2011 ("early") and 2010-2017 ("extended"). We predicted 2-year risk ratios (RRs) and risk differences (RDs) for stroke/SE, major bleeding, and all-cause death in the Medicare populations using the observed baseline characteristics. The trial and early target populations had similar mean (SD) CHADS scores (2.15 (SD 1.13) vs. 2.15 (SD 0.91)) but different mean ages (71 vs. 79 years). Compared with RE-LY, the early Medicare population had similar predicted benefit of dabigatran vs. warfarin for stroke/SE (trial RR = 0.63, 95% confidence interval (CI) = 0.50 to 0.76 and RD = -1.37%, -1.96% to -0.77%, Medicare RR = 0.73, 0.65 to 0.82 and RD = -0.92%, -1.26% to -0.59%) and risks for major bleeding and all-cause death. The time-extended target population showed similar results. Outcome model-based prediction facilitates estimating the average treatment effects of a drug in different target populations when treatment and outcome data are unreliable or unavailable. The predicted effects may inform payers' coverage decisions for patients, especially shortly after a drug's launch when observational data are scarce.

摘要

试验结果可能不适用于在临床实践中接受治疗的目标人群,这些人群的基线特征分布不同,会改变治疗效果。我们使用基于试验数据开发的结局模型来预测医疗保险人群中的治疗效果。我们使用了来自随机评估长期抗凝治疗试验(RE-LY)的数据,该试验研究了达比加群酯与华法林在伴有心房颤动的患者中对卒中或全身性栓塞(卒中/SE)的影响。我们通过在试验数据中拟合比例风险模型来开发结局模型。目标人群是在 2010-2011 年(“早期”)和 2010-2017 年(“扩展”)期间开始使用达比加群酯或华法林的符合试验条件的医疗保险受益人群。我们使用观察到的基线特征,在医疗保险人群中预测卒中/SE、大出血和全因死亡的 2 年风险比(RR)和风险差异(RD)。试验和早期目标人群的平均(SD)CHA2DS2-VASc 评分相似(2.15(SD 1.13)与 2.15(SD 0.91)),但年龄不同(71 岁与 79 岁)。与 RE-LY 相比,早期医疗保险人群中达比加群酯与华法林治疗卒中/SE 的获益相似(试验 RR=0.63,95%置信区间[CI]:0.50 至 0.76 和 RD=-1.37%,-1.96%至-0.77%,医疗保险 RR=0.73,0.65 至 0.82 和 RD=-0.92%,-1.26%至-0.59%),且大出血和全因死亡的风险也相似。时间扩展的目标人群也显示出类似的结果。基于结局模型的预测有助于在治疗和结局数据不可靠或无法获得的情况下,估计不同目标人群中药物的平均治疗效果。预测结果可以为支付者的患者覆盖决策提供信息,尤其是在药物推出后不久,观察性数据稀缺时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验