Suppr超能文献

基于 CMTM6 表达和临床特征的列线图预测肝细胞癌患者术后总生存期。

Nomogram based on CMTM6 expression and clinical characteristics to predict postoperative overall survival in patients with hepatocellular carcinoma.

机构信息

Cangzhou People's Hospital, Cangzhou, China.

College of Chemical Engineering, Northwest University, Xian, China.

出版信息

Histol Histopathol. 2024 Mar;39(3):381-390. doi: 10.14670/HH-18-643. Epub 2023 Jun 19.

Abstract

BACKGROUND

The purpose of this study was to investigate the expression of CMTM6 in HCC tissues and its prognostic value, and to try to develop a nomogram prognostic model based on CMTM6.

METHODS

In this retrospective study, immunohistochemical (IHC) staining was performed in 178 patients who underwent radical hepatectomy in the same surgical team. R software was used to construct the nomogram model. The Bootstrap sampling method was used for internal validation.

RESULTS

CMTM6 is significantly expressed in HCC tissues and is closely associated with decreased overall survival (OS). PVTT (HR = 6.2, 95% CI: 3.06 12.6, P<0.001), CMTM6 (HR=2.30, 95% CI: 1.27 4.0, P=0.006) and MVI (HR=10.8, 95% CI: 4.19-27.6, P<0.001) were independent predictors of OS. The nomogram combined with CMTM6, PVTT and MVI was more predictive than the traditional TNM scoring system, and the prediction effects of 1-year and 3-year OS were accurate.

CONCLUSIONS

The prognosis of a patient may be predicted using high levels of CMTM6 expression in HCC tissues, and the nomogram model including CMTM6 expression has the best predictive ability.

摘要

背景

本研究旨在探讨 CMTM6 在 HCC 组织中的表达及其预后价值,并尝试构建基于 CMTM6 的列线图预后模型。

方法

本回顾性研究对同一手术团队行根治性肝切除术的 178 例患者进行了免疫组织化学(IHC)染色。使用 R 软件构建列线图模型。采用 Bootstrap 抽样法进行内部验证。

结果

CMTM6 在 HCC 组织中表达显著,与总生存期(OS)降低密切相关。PVTT(HR=6.2,95%CI:3.06-12.6,P<0.001)、CMTM6(HR=2.30,95%CI:1.27-4.0,P=0.006)和 MVI(HR=10.8,95%CI:4.19-27.6,P<0.001)是 OS 的独立预后因素。CMTM6、PVTT 和 MVI 联合的列线图比传统的 TNM 评分系统更具预测性,1 年和 3 年 OS 的预测效果准确。

结论

CMTM6 在 HCC 组织中的高表达水平可预测患者的预后,包含 CMTM6 表达的列线图模型具有最佳的预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验