Department of Computer Science and Engineering, NIT Patna, Patna, Bihar, India.
Proc Inst Mech Eng H. 2023 Aug;237(8):946-957. doi: 10.1177/09544119231182037. Epub 2023 Jun 27.
Lung cancer is the uncontrolled growth of cells that originates in the lung parenchyma or cells that line the air passages. These cells divide rapidly to form malicious tumors. This paper proposes a multi-task ensemble of three dimensional (3D) deep neural network (DNN) based model, namely: pre-trained EfficientNetB0, BiGRU-based SEResNext101, and the proposed LungNet. The ensemble model performs binary classification and regression tasks to accurately classify the benign and malignant pulmonary nodules. This study also explores the attribute importance and proposes a domain knowledge-based regularization technique. The proposed model is evaluated on the public benchmark LIDC-IDRI dataset. Through a comparative study, it was shown that when coefficients generated by the random forest (RF) are used in the loss function, the proposed ensemble model offers a better prediction capability of the accuracy of 96.4% compared to the state-of-the-art methods. In addition, the receiver operating characteristic curves show that the proposed ensemble model has better performance than the base learners. Thus, the proposed CAD-based model can efficiently detect malignant pulmonary nodules.
肺癌是起源于肺实质或气道细胞的不受控制的细胞生长。这些细胞快速分裂形成恶性肿瘤。本文提出了一种基于三维(3D)深度神经网络(DNN)的多任务集成模型,即:预训练的 EfficientNetB0、基于 BiGRU 的 SEResNext101 和提出的 LungNet。该集成模型执行二进制分类和回归任务,以准确分类良性和恶性肺结节。本研究还探索了属性重要性,并提出了一种基于领域知识的正则化技术。该模型在公共基准 LIDC-IDRI 数据集上进行了评估。通过对比研究表明,当随机森林(RF)生成的系数用于损失函数时,所提出的集成模型在准确性方面的预测能力优于最先进的方法,达到了 96.4%。此外,接收者操作特征曲线表明,所提出的集成模型比基础学习者具有更好的性能。因此,基于 CAD 的模型可以有效地检测恶性肺结节。