Suppr超能文献

基于多模态对比学习的肺结节分类(Nodule-CLIP:Lung nodule classification based on multi-modal contrastive learning)。

Nodule-CLIP: Lung nodule classification based on multi-modal contrastive learning.

机构信息

College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, 211800, Jiangsu, China.

College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, 211800, Jiangsu, China.

出版信息

Comput Biol Med. 2024 Jun;175:108505. doi: 10.1016/j.compbiomed.2024.108505. Epub 2024 Apr 26.

Abstract

The latest developments in deep learning have demonstrated the importance of CT medical imaging for the classification of pulmonary nodules. However, challenges remain in fully leveraging the relevant medical annotations of pulmonary nodules and distinguishing between the benign and malignant labels of adjacent nodules. Therefore, this paper proposes the Nodule-CLIP model, which deeply mines the potential relationship between CT images, complex attributes of lung nodules, and benign and malignant attributes of lung nodules through a comparative learning method, and optimizes the model in the image feature extraction network by using its similarities and differences to improve its ability to distinguish similar lung nodules. Firstly, we segment the 3D lung nodule information by U-Net to reduce the interference caused by the background of lung nodules and focus on the lung nodule images. Secondly, the image features, class features, and complex attribute features are aligned by contrastive learning and loss function in Nodule-CLIP to achieve lung nodule image optimization and improve classification ability. A series of testing and ablation experiments were conducted on the public dataset LIDC-IDRI, and the final benign and malignant classification rate was 90.6%, and the recall rate was 92.81%. The experimental results show the advantages of this method in terms of lung nodule classification as well as interpretability.

摘要

深度学习的最新进展表明,CT 医学成像对于肺结节的分类非常重要。然而,充分利用肺结节的相关医学注释并区分相邻结节的良性和恶性标签仍然存在挑战。因此,本文提出了 Nodule-CLIP 模型,该模型通过对比学习方法深入挖掘 CT 图像、肺结节复杂属性以及肺结节良性和恶性属性之间的潜在关系,并通过其相似性和差异性优化图像特征提取网络中的模型,提高其区分相似肺结节的能力。首先,我们使用 U-Net 对 3D 肺结节信息进行分割,以减少肺结节背景造成的干扰,并关注肺结节图像。其次,通过对比学习和损失函数在 Nodule-CLIP 中对齐图像特征、类别特征和复杂属性特征,实现肺结节图像优化,提高分类能力。在公共数据集 LIDC-IDRI 上进行了一系列测试和消融实验,最终良性和恶性分类率达到 90.6%,召回率达到 92.81%。实验结果表明,该方法在肺结节分类以及可解释性方面具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验