Suppr超能文献

人工智能改善健康筛查人群胸部X光片上的结节检测:一项随机对照试验。

AI Improves Nodule Detection on Chest Radiographs in a Health Screening Population: A Randomized Controlled Trial.

作者信息

Nam Ju Gang, Hwang Eui Jin, Kim Jayoun, Park Nanhee, Lee Eun Hee, Kim Hyun Jin, Nam Miyeon, Lee Jong Hyuk, Park Chang Min, Goo Jin Mo

机构信息

From the Department of Radiology (J.G.N., E.J.H., J.H.L., C.M.P., J.M.G.), Artificial Intelligence Collaborative Network (J.G.N.), Medical Research Collaborating Center (J.K., N.P.), and Center for Health Promotion and Optimal Aging (E.H.L., M.N.), Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Radiology, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea (H.J.K.); Institute of Medical and Biological Engineering, Seoul National University Medical Research Center, Seoul, Republic of Korea (C.M.P.); and Cancer Research Institute, Seoul National University, Seoul, Republic of Korea (J.M.G.).

出版信息

Radiology. 2023 Apr;307(2):e221894. doi: 10.1148/radiol.221894. Epub 2023 Feb 7.

Abstract

Background The impact of artificial intelligence (AI)-based computer-aided detection (CAD) software has not been prospectively explored in real-world populations. Purpose To investigate whether commercial AI-based CAD software could improve the detection rate of actionable lung nodules on chest radiographs in participants undergoing health checkups. Materials and Methods In this single-center, pragmatic, open-label randomized controlled trial, participants who underwent chest radiography between July 2020 and December 2021 in a health screening center were enrolled and randomized into intervention (AI group) and control (non-AI group) arms. One of three designated radiologists with 13-36 years of experience interpreted each radiograph, referring to the AI-based CAD results for the AI group. The primary outcome was the detection rate, that is, the number of true-positive radiographs divided by the total number of radiographs, of actionable lung nodules confirmed on CT scans obtained within 3 months. Actionable nodules were defined as solid nodules larger than 8 mm or subsolid nodules with a solid portion larger than 6 mm (Lung Imaging Reporting and Data System, or Lung-RADS, category 4). Secondary outcomes included the positive-report rate, sensitivity, false-referral rate, and malignant lung nodule detection rate. Clinical outcomes were compared between the two groups using univariable logistic regression analyses. Results A total of 10 476 participants (median age, 59 years [IQR, 50-66 years]; 5121 men) were randomized to an AI group ( = 5238) or non-AI group ( = 5238). The trial met the predefined primary outcome, demonstrating an improved detection rate of actionable nodules in the AI group compared with the non-AI group (0.59% [31 of 5238 participants] vs 0.25% [13 of 5238 participants], respectively; odds ratio, 2.4; 95% CI: 1.3, 4.7; = .008). The detection rate for malignant lung nodules was higher in the AI group compared with the non-AI group (0.15% [eight of 5238 participants] vs 0.0% [0 of 5238 participants], respectively; = .008). The AI and non-AI groups showed similar false-referral rates (45.9% [56 of 122 participants] vs 56.0% [56 of 100 participants], respectively; = .14) and positive-report rates (2.3% [122 of 5238 participants] vs 1.9% [100 of 5238 participants]; = .14). Conclusion In health checkup participants, artificial intelligence-based software improved the detection of actionable lung nodules on chest radiographs. © RSNA, 2023 See also the editorial by Auffermann in this isssue.

摘要

背景

基于人工智能(AI)的计算机辅助检测(CAD)软件在现实人群中的影响尚未得到前瞻性研究。

目的

探讨基于商业AI的CAD软件能否提高健康体检参与者胸部X线片上可处理肺结节的检出率。

材料与方法

在这项单中心、实用、开放标签的随机对照试验中,纳入了2020年7月至2021年12月在健康筛查中心接受胸部X线检查的参与者,并将其随机分为干预组(AI组)和对照组(非AI组)。三名经验丰富(13 - 36年经验)的指定放射科医生之一解读每张X线片,AI组参考基于AI的CAD结果。主要结局是3个月内获得的CT扫描证实的可处理肺结节的检出率,即真阳性X线片数量除以X线片总数。可处理结节定义为直径大于8 mm的实性结节或实性部分大于6 mm的亚实性结节(肺影像报告和数据系统,即Lung-RADS 4类)。次要结局包括阳性报告率、敏感性、假转诊率和恶性肺结节检出率。使用单变量逻辑回归分析比较两组的临床结局。

结果

共有10476名参与者(中位年龄59岁[四分位间距,50 - 66岁];5121名男性)被随机分为AI组(n = 5238)或非AI组(n = 5238)。该试验达到了预先定义的主要结局,表明与非AI组相比,AI组可处理结节的检出率有所提高(分别为0.59%[5238名参与者中的31名]和0.25%[5238名参与者中的13名];优势比,2.4;95%CI:1.3,4.7;P = .008)。与非AI组相比,AI组恶性肺结节的检出率更高(分别为0.15%[5238名参与者中的8名]和0.0%[5238名参与者中的0名];P = .008)。AI组和非AI组的假转诊率相似(分别为45.9%[122名参与者中的56名]和56.0%[100名参与者中的56名];P = .14),阳性报告率也相似(2.3%[5238名参与者中的122名]和1.9%[5238名参与者中的100名];P = .14)。

结论

在健康体检参与者中,基于人工智能的软件提高了胸部X线片上可处理肺结节的检出率。©RSNA,2023 另见本期Auffermann的社论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验