文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Development of Positively Charged Poly-L-Lysine Magnetic Nanoparticles as Potential MRI Contrast Agent.

作者信息

Antal Iryna, Strbak Oliver, Zavisova Vlasta, Vojtova Jana, Kubovcikova Martina, Jurikova Alena, Khmara Iryna, Girman Vladimir, Džunda Róbert, Kovaľ Karol, Koneracka Martina

机构信息

Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia.

Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovakia.

出版信息

Nanomaterials (Basel). 2023 Jun 9;13(12):1831. doi: 10.3390/nano13121831.


DOI:10.3390/nano13121831
PMID:37368261
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10305316/
Abstract

A colloidal solution of magnetic nanoparticles (MNPs) modified with biocompatible positively charged poly-L-lysine (PLL) with an oleate (OL) layer employed as an initial coating was produced as a potential MRI contrast agent. The effect of various PLL/MNPs' mass ratios on the samples' hydrodynamic diameter, zeta potential, and isoelectric point (IEP) was studied by the dynamic light-scattering method. The optimal mass ratio for MNPs' surface coating was 0.5 (sample PLL-OL-MNPs). The average hydrodynamic particle size in the sample of PLL-OL-MNPs was 124.4 ± 1.4 nm, and in the PLL-unmodified nanoparticles, it was 60.9 ± 0.2 nm, indicating that the OL-MNPs' surface became covered by PLL. Next, the typical characteristics of the superparamagnetic behavior were observed in all samples. In addition, the decrease in saturation magnetizations from 66.9 Am/kg for MNPs to 35.9 and 31.6 Am/kg for sample OL-MNPs and PLL-OL-MNPs also confirmed successful PLL adsorption. Moreover, we show that both OL-MNPs and PLL-OL-MNPs exhibit excellent MRI relaxivity properties and a very high ratio, which is very desirable in biomedical applications with required MRI contrast enhancement. The PLL coating itself appears to be the crucial factor in enhancing the relaxivity of MNPs in MRI relaxometry.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/fb02ff65ae6f/nanomaterials-13-01831-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/5cb49ace67e0/nanomaterials-13-01831-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/afe5a5301797/nanomaterials-13-01831-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/efe338668d2c/nanomaterials-13-01831-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/0c3bdf342b8d/nanomaterials-13-01831-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/fe41e203a051/nanomaterials-13-01831-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/0b3d2f6552b3/nanomaterials-13-01831-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/61c2130a2957/nanomaterials-13-01831-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/bd8632799401/nanomaterials-13-01831-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/c5e8f105a5b0/nanomaterials-13-01831-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/2e67644311af/nanomaterials-13-01831-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/e5b654d33216/nanomaterials-13-01831-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/18be7a58461d/nanomaterials-13-01831-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/8da27dd53907/nanomaterials-13-01831-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/cec518522bc0/nanomaterials-13-01831-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/fb02ff65ae6f/nanomaterials-13-01831-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/5cb49ace67e0/nanomaterials-13-01831-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/afe5a5301797/nanomaterials-13-01831-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/efe338668d2c/nanomaterials-13-01831-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/0c3bdf342b8d/nanomaterials-13-01831-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/fe41e203a051/nanomaterials-13-01831-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/0b3d2f6552b3/nanomaterials-13-01831-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/61c2130a2957/nanomaterials-13-01831-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/bd8632799401/nanomaterials-13-01831-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/c5e8f105a5b0/nanomaterials-13-01831-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/2e67644311af/nanomaterials-13-01831-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/e5b654d33216/nanomaterials-13-01831-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/18be7a58461d/nanomaterials-13-01831-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/8da27dd53907/nanomaterials-13-01831-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/cec518522bc0/nanomaterials-13-01831-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e753/10305316/fb02ff65ae6f/nanomaterials-13-01831-g014.jpg

相似文献

[1]
Development of Positively Charged Poly-L-Lysine Magnetic Nanoparticles as Potential MRI Contrast Agent.

Nanomaterials (Basel). 2023-6-9

[2]
Effect of Europium Substitution on the Structural, Magnetic and Relaxivity Properties of Mn-Zn Ferrite Nanoparticles: A Dual-Mode MRI Contrast-Agent Candidate.

Nanomaterials (Basel). 2023-1-12

[3]
Synthesis and characterization of modified magnetic nanoparticles as theranostic agents: in vitro safety assessment in healthy cells.

Toxicol In Vitro. 2021-4

[4]
Interaction of poly-l-lysine coating and heparan sulfate proteoglycan on magnetic nanoparticle uptake by tumor cells.

Int J Nanomedicine. 2018-3-20

[5]
MRI Relaxivity Changes of the Magnetic Nanoparticles Induced by Different Amino Acid Coatings.

Nanomaterials (Basel). 2020-2-24

[6]
Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling.

Bioconjug Chem. 2008-3

[7]
-Acetylcysteine-Loaded Magnetic Nanoparticles for Magnetic Resonance Imaging.

Int J Mol Sci. 2023-7-13

[8]
Monolayers of poly-L-lysine on mica--Electrokinetic characteristics.

J Colloid Interface Sci. 2015-6-9

[9]
Facile Synthesis, Static, and Dynamic Magnetic Characteristics of Varying Size Double-Surfactant-Coated Mesoscopic Magnetic Nanoparticles Dispersed Stable Aqueous Magnetic Fluids.

Nanomaterials (Basel). 2021-11-9

[10]
PEGylation of Superparamagnetic Iron Oxide Nanoparticles with Self-Organizing Polyacrylate-PEG Brushes for Contrast Enhancement in MRI Diagnosis.

Nanomaterials (Basel). 2018-9-29

引用本文的文献

[1]
Spatial Topological Structure Design of Porous Ti-6Al-4V Alloy with Low Modulus and Magnetic Susceptibility.

Nanomaterials (Basel). 2023-12-11

本文引用的文献

[1]
L-Lysine-Coated Magnetic Core-Shell Nanoparticles for the Removal of Acetylsalicylic Acid from Aqueous Solutions.

Nanomaterials (Basel). 2023-1-27

[2]
Influence of Dextran Molecular Weight on the Physical Properties of Magnetic Nanoparticles for Hyperthermia and MRI Applications.

Nanomaterials (Basel). 2020-12-9

[3]
MRI Relaxivity Changes of the Magnetic Nanoparticles Induced by Different Amino Acid Coatings.

Nanomaterials (Basel). 2020-2-24

[4]
Amino Acid Functionalized Superparamagnetic Nanoparticles Inhibit Lysozyme Amyloid Fibrillization.

Chemistry. 2019-5-9

[5]
Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems.

Pharmaceutics. 2018-5-18

[6]
d,l-lysine functionalized FeO nanoparticles for detection of cancer cells.

Colloids Surf B Biointerfaces. 2017-12-21

[7]
Aggregation and Colloidal Stability of Commercially Available Al₂O₃ Nanoparticles in Aqueous Environments.

Nanomaterials (Basel). 2016-5-13

[8]
Exceedingly small iron oxide nanoparticles as positive MRI contrast agents.

Proc Natl Acad Sci U S A. 2017-2-28

[9]
Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents.

Int J Nanomedicine. 2015-3-6

[10]
Acoustic wave in a suspension of magnetic nanoparticle with sodium oleate coating.

J Nanopart Res. 2014

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索