文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多聚赖氨酸涂层与硫酸乙酰肝素蛋白聚糖对肿瘤细胞摄取磁性纳米颗粒的相互作用。

Interaction of poly-l-lysine coating and heparan sulfate proteoglycan on magnetic nanoparticle uptake by tumor cells.

机构信息

Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan, Republic of China.

Department of Physiology and Pharmacology and Healthy Aging Research Center, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan, Republic of China.

出版信息

Int J Nanomedicine. 2018 Mar 20;13:1693-1706. doi: 10.2147/IJN.S156029. eCollection 2018.


DOI:10.2147/IJN.S156029
PMID:29599614
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5866726/
Abstract

BACKGROUND: Poly-l-lysine (PLL) enhances nanoparticle (NP) uptake, but the molecular mechanism remains unresolved. We asked whether PLL may interact with negatively charged glycoconjugates on the cell surface and facilitate uptake of magnetic NPs (MNPs) by tumor cells. METHODS: PLL-coated MNPs (PLL-MNPs) with positive and negative ζ-potential were prepared and characterized. Confocal and transmission electron microscopy was used to analyze cellular internalization of MNPs. A colorimetric iron assay was used to quantitate cell-associated MNPs (MNP). RESULTS: Coadministration of PLL and dextran-coated MNPs in culture enhanced cellular internalization of MNPs, with increased vesicle size and numbers/cell. MNP was increased by eight- to 12-fold in response to PLL in a concentration-dependent manner in human glioma and HeLa cells. However, the application of a magnetic field attenuated PLL-induced increase in MNP. PLL-coating increased MNP regardless of ζ-potential of PLL-MNPs, whereas magnetic force did not enhance MNP. In contrast, epigallocatechin gallate and magnetic force synergistically enhanced PLL-MNP uptake. In addition, heparin, but not sialic acid, greatly reduced the enhancement effects of PLL; however, removal of heparan sulfate from heparan sulfate proteoglycans of the cell surface by heparinase III significantly reduced MNP. CONCLUSION: Our results suggest that PLL-heparan sulfate proteoglycan interaction may be the first step mediating PLL-MNP internalization by tumor cells. Given these results, PLL may facilitate NP interaction with tumor cells via a molecular mechanism shared by infection machinery of certain viruses.

摘要

背景:多聚赖氨酸 (PLL) 可增强纳米颗粒 (NP) 的摄取,但分子机制尚不清楚。我们想知道 PLL 是否可以与细胞表面带负电荷的糖缀合物相互作用,并促进肿瘤细胞摄取磁性 NP (MNP)。

方法:制备并表征了具有正和负 ζ-电位的 PLL 包覆的 MNPs(PLL-MNPs)。共聚焦和透射电子显微镜用于分析 MNPs 的细胞内摄取。比色铁测定法用于定量细胞相关的 MNPs(MNP)。

结果:在培养中同时给予 PLL 和葡聚糖包覆的 MNPs 可增强 MNPs 的细胞内摄取,增加囊泡的大小和数量/细胞。MNP 的增加呈浓度依赖性,在人神经胶质瘤和 HeLa 细胞中,PLL 的浓度增加了 8 到 12 倍。然而,施加磁场会减弱 PLL 诱导的 MNP 增加。PLL 涂层增加了 MNP,无论 PLL-MNP 的 ζ-电位如何,而磁场不会增强 MNP。相比之下,表没食子儿茶素没食子酸酯和磁场协同增强了 PLL-MNP 的摄取。此外,肝素而不是唾液酸大大降低了 PLL 的增强作用;然而,肝素酶 III 从细胞表面的硫酸乙酰肝素蛋白聚糖中去除肝素可显著减少 MNP。

结论:我们的结果表明,PLL-硫酸乙酰肝素蛋白聚糖相互作用可能是肿瘤细胞内吞 PLL-MNP 的第一步。鉴于这些结果,PLL 可能通过某些病毒的感染机制共享的分子机制促进 NP 与肿瘤细胞的相互作用。

相似文献

[1]
Interaction of poly-l-lysine coating and heparan sulfate proteoglycan on magnetic nanoparticle uptake by tumor cells.

Int J Nanomedicine. 2018-3-20

[2]
Gallate-induced nanoparticle uptake by tumor cells: Structure-activity relationships.

Colloids Surf B Biointerfaces. 2019-3-22

[3]
Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling.

Bioconjug Chem. 2008-3

[4]
Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction.

Nanoscale. 2014-9-7

[5]
Cyclic Strain Mitigates Nanoparticle Internalization by Vascular Smooth Muscle Cells.

Int J Nanomedicine. 2022

[6]
Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications.

J Nanobiotechnology. 2018-10-13

[7]
Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance.

Int J Nanomedicine. 2012-6-25

[8]
Effects of PEGylation on capture of dextran-coated magnetic nanoparticles in microcirculation.

Int J Nanomedicine. 2019-7-3

[9]
Interaction of Poly(l-lysine)/Polysaccharide Complex Nanoparticles with Human Vascular Endothelial Cells.

Nanomaterials (Basel). 2018-5-23

[10]
Mechanism of poly-l-lysine-modified iron oxide nanoparticles uptake into cells.

J Biomed Mater Res A. 2013-3-18

引用本文的文献

[1]
Localized ultrasonic stimulation using a piezoelectric micromachined ultrasound transducer array for selective neural differentiation of magnetic cell-based robots.

Microsyst Nanoeng. 2025-3-20

[2]
Cationic polymer effect on brown adipogenic induction of dedifferentiated fat cells.

Mater Today Bio. 2024-7-17

[3]
Poly-basic peptides and polymers as new drug candidates against Plasmodium falciparum.

Malar J. 2024-8-1

[4]
The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma.

Front Mol Biosci. 2023-1-4

[5]
Laminin Receptor-Mediated Nanoparticle Uptake by Tumor Cells: Interplay of Epigallocatechin Gallate and Magnetic Force at Nano-Bio Interface.

Pharmaceutics. 2022-7-22

[6]
Metal-Based Nanostructured Therapeutic Strategies for Glioblastoma Treatment-An Update.

Biomedicines. 2022-7-5

[7]
Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications.

J Nanobiotechnology. 2022-6-27

[8]
Cyclic Strain Mitigates Nanoparticle Internalization by Vascular Smooth Muscle Cells.

Int J Nanomedicine. 2022

[9]
In Vitro Evaluation of Hyperthermia Magnetic Technique Indicating the Best Strategy for Internalization of Magnetic Nanoparticles Applied in Glioblastoma Tumor Cells.

Pharmaceutics. 2021-8-7

[10]
Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape.

Nanomaterials (Basel). 2020-9-11

本文引用的文献

[1]
Highly Efficient Labeling of Human Lung Cancer Cells Using Cationic Poly-l-lysine-Assisted Magnetic Iron Oxide Nanoparticles.

Nanomicro Lett. 2015

[2]
Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy.

Nanomedicine (Lond). 2016-11-23

[3]
Inhibition of EMMPRIN and MMP-9 Expression by Epigallocatechin-3-Gallate through 67-kDa Laminin Receptor in PMA-Induced Macrophages.

Cell Physiol Biochem. 2016

[4]
Two-Step Mechanism of Cellular Uptake of Cationic Gold Nanoparticles Modified by (16-Mercaptohexadecyl)trimethylammonium Bromide.

Bioconjug Chem. 2016-10-19

[5]
Tumor Microenvironment and Angiogenic Blood Vessels Dual-Targeting for Enhanced Anti-Glioma Therapy.

ACS Appl Mater Interfaces. 2016-9-6

[6]
Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles.

Beilstein J Nanotechnol. 2016-6-27

[7]
Endothelial glycocalyx conditions influence nanoparticle uptake for passive targeting.

Int J Nanomedicine. 2016-7-21

[8]
Cellular uptake of hepatitis B virus envelope L particles is independent of sodium taurocholate cotransporting polypeptide, but dependent on heparan sulfate proteoglycan.

Virology. 2016-10

[9]
Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies.

Chem Rev. 2016-4-25

[10]
Highly Efficient Delivery of Functional Cargoes by a Novel Cell-Penetrating Peptide Derived from SP140-Like Protein.

Bioconjug Chem. 2016-5-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索