Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan, Republic of China.
Department of Physiology and Pharmacology and Healthy Aging Research Center, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan, Republic of China.
Int J Nanomedicine. 2018 Mar 20;13:1693-1706. doi: 10.2147/IJN.S156029. eCollection 2018.
BACKGROUND: Poly-l-lysine (PLL) enhances nanoparticle (NP) uptake, but the molecular mechanism remains unresolved. We asked whether PLL may interact with negatively charged glycoconjugates on the cell surface and facilitate uptake of magnetic NPs (MNPs) by tumor cells. METHODS: PLL-coated MNPs (PLL-MNPs) with positive and negative ζ-potential were prepared and characterized. Confocal and transmission electron microscopy was used to analyze cellular internalization of MNPs. A colorimetric iron assay was used to quantitate cell-associated MNPs (MNP). RESULTS: Coadministration of PLL and dextran-coated MNPs in culture enhanced cellular internalization of MNPs, with increased vesicle size and numbers/cell. MNP was increased by eight- to 12-fold in response to PLL in a concentration-dependent manner in human glioma and HeLa cells. However, the application of a magnetic field attenuated PLL-induced increase in MNP. PLL-coating increased MNP regardless of ζ-potential of PLL-MNPs, whereas magnetic force did not enhance MNP. In contrast, epigallocatechin gallate and magnetic force synergistically enhanced PLL-MNP uptake. In addition, heparin, but not sialic acid, greatly reduced the enhancement effects of PLL; however, removal of heparan sulfate from heparan sulfate proteoglycans of the cell surface by heparinase III significantly reduced MNP. CONCLUSION: Our results suggest that PLL-heparan sulfate proteoglycan interaction may be the first step mediating PLL-MNP internalization by tumor cells. Given these results, PLL may facilitate NP interaction with tumor cells via a molecular mechanism shared by infection machinery of certain viruses.
背景:多聚赖氨酸 (PLL) 可增强纳米颗粒 (NP) 的摄取,但分子机制尚不清楚。我们想知道 PLL 是否可以与细胞表面带负电荷的糖缀合物相互作用,并促进肿瘤细胞摄取磁性 NP (MNP)。
方法:制备并表征了具有正和负 ζ-电位的 PLL 包覆的 MNPs(PLL-MNPs)。共聚焦和透射电子显微镜用于分析 MNPs 的细胞内摄取。比色铁测定法用于定量细胞相关的 MNPs(MNP)。
结果:在培养中同时给予 PLL 和葡聚糖包覆的 MNPs 可增强 MNPs 的细胞内摄取,增加囊泡的大小和数量/细胞。MNP 的增加呈浓度依赖性,在人神经胶质瘤和 HeLa 细胞中,PLL 的浓度增加了 8 到 12 倍。然而,施加磁场会减弱 PLL 诱导的 MNP 增加。PLL 涂层增加了 MNP,无论 PLL-MNP 的 ζ-电位如何,而磁场不会增强 MNP。相比之下,表没食子儿茶素没食子酸酯和磁场协同增强了 PLL-MNP 的摄取。此外,肝素而不是唾液酸大大降低了 PLL 的增强作用;然而,肝素酶 III 从细胞表面的硫酸乙酰肝素蛋白聚糖中去除肝素可显著减少 MNP。
结论:我们的结果表明,PLL-硫酸乙酰肝素蛋白聚糖相互作用可能是肿瘤细胞内吞 PLL-MNP 的第一步。鉴于这些结果,PLL 可能通过某些病毒的感染机制共享的分子机制促进 NP 与肿瘤细胞的相互作用。
Colloids Surf B Biointerfaces. 2019-3-22
Bioconjug Chem. 2008-3
Int J Nanomedicine. 2022
J Nanobiotechnology. 2018-10-13
Int J Nanomedicine. 2012-6-25
Int J Nanomedicine. 2019-7-3
Nanomaterials (Basel). 2018-5-23
J Biomed Mater Res A. 2013-3-18
Mater Today Bio. 2024-7-17
Front Mol Biosci. 2023-1-4
Biomedicines. 2022-7-5
J Nanobiotechnology. 2022-6-27
Int J Nanomedicine. 2022
Nanomaterials (Basel). 2020-9-11
ACS Appl Mater Interfaces. 2016-9-6
Beilstein J Nanotechnol. 2016-6-27
Int J Nanomedicine. 2016-7-21