Estelrich Joan, Sánchez-Martín María Jesús, Busquets Maria Antònia
Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain ; Institut de Nanociència I Nanotecnologia (IN UB), Barcelona, Catalonia, Spain.
Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
Int J Nanomedicine. 2015 Mar 6;10:1727-41. doi: 10.2147/IJN.S76501. eCollection 2015.
Magnetic resonance imaging (MRI) has become one of the most widely used and powerful tools for noninvasive clinical diagnosis owing to its high degree of soft tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T 1, spin-lattice relaxation and T 2, spin-spin relaxation) of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents) are administered prior to the scanning. Shortening T 1 and T 2 increases the corresponding relaxation rates, 1/T 1 and 1/T 2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T 2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions), providing positive contrast in T 1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor) targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can, furthermore, incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of nanoparticles at the site of interest and the bioavailability, respectively. Here, we review the most important characteristics of the nanoparticles or complexes used as MRI contrast agents.
磁共振成像(MRI)因其高度的软组织对比度、空间分辨率和穿透深度,已成为临床上使用最广泛且功能强大的非侵入性诊断工具之一。MRI信号强度与体内水质子的弛豫时间(T1,自旋晶格弛豫;T2,自旋自旋弛豫)相关。为了增加对比度,在扫描前会注射各种无机纳米颗粒和配合物(即所谓的造影剂)。缩短T1和T2会提高相应的弛豫率1/T1和1/T2,分别在更短时间内产生高信号和低信号。此外,通过采集大量测量数据可以提高信噪比。所使用的造影剂通常基于氧化铁纳米颗粒或铁氧体,在T2加权图像中提供负对比度;或者基于镧系金属配合物(主要含钆离子),在T1加权图像中提供正对比度。最近,镧系配合物已被固定在纳米结构材料中,以开发一类新型造影剂,其功能包括血池和器官(或肿瘤)靶向。同时,为了克服单一成像方式的局限性,多模态成像技术已被开发出来。一个重要的挑战是设计能够通过多模态技术检测的一体化造影剂。磁脂质体是高效的多模态造影剂。它们可以同时承载两种对比度,此外,还可以结合靶向配体和聚乙二醇链,分别增强纳米颗粒在感兴趣部位的积累和生物利用度。在这里,我们综述用作MRI造影剂的纳米颗粒或配合物的最重要特性。