文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于磁共振成像诊断中增强造影的具有自组装聚丙烯酸酯-聚乙二醇刷的超顺磁性氧化铁纳米颗粒的聚乙二醇化

PEGylation of Superparamagnetic Iron Oxide Nanoparticles with Self-Organizing Polyacrylate-PEG Brushes for Contrast Enhancement in MRI Diagnosis.

作者信息

Illés Erzsébet, Szekeres Márta, Tóth Ildikó Y, Farkas Katalin, Földesi Imre, Szabó Ákos, Iván Béla, Tombácz Etelka

机构信息

Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vt. 1, H-6720 Szeged, Hungary.

Department of Laboratory Medicine, University of Szeged, Semmelweis u. 6, H-6720 Szeged, Hungary.

出版信息

Nanomaterials (Basel). 2018 Sep 29;8(10):776. doi: 10.3390/nano8100776.


DOI:10.3390/nano8100776
PMID:30274317
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6215243/
Abstract

For biomedical applications, superparamagnetic nanoparticles (MNPs) have to be coated with a stealth layer that provides colloidal stability in biological media, long enough persistence and circulation times for reaching the expected medical aims, and anchor sites for further attachment of bioactive agents. One of such stealth molecules designed and synthesized by us, poly(polyethylene glycol methacrylate--acrylic acid) referred to as P(PEGMA-AA), was demonstrated to make MNPs reasonably resistant to cell internalization, and be an excellent candidate for magnetic hyperthermia treatments in addition to possessing the necessary colloidal stability under physiological conditions (Illés et al. J. Magn. Magn. Mater. 2018, 451, 710⁻720). In the present work, we elaborated on the molecular background of the formation of the P(PEGMA-AA)-coated MNPs, and of their remarkable colloidal stability and salt tolerance by using potentiometric acid⁻base titration, adsorption isotherm determination, infrared spectroscopy (FT-IR ATR), dynamic light scattering, and electrokinetic potential determination methods. The P(PEGMA-AA)@MNPs have excellent blood compatibility as demonstrated in blood sedimentation, smears, and white blood cell viability experiments. In addition, blood serum proteins formed a protein corona, protecting the particles against aggregation (found in dynamic light scattering and electrokinetic potential measurements). Our novel particles also proved to be promising candidates for MRI diagnosis, exhibiting one of the highest values of 2 relaxivity (451 mMs) found in literature.

摘要

对于生物医学应用而言,超顺磁性纳米颗粒(MNPs)必须包覆一层隐身层,该隐身层要能在生物介质中提供胶体稳定性,具有足够长的持续时间和循环时间以实现预期的医学目标,还要有用于进一步连接生物活性剂的锚定位点。我们设计并合成的一种这样的隐身分子,聚(聚乙二醇甲基丙烯酸酯 - 丙烯酸),简称为P(PEGMA - AA),已被证明能使MNPs对细胞内化具有合理的抗性,并且除了在生理条件下具有必要的胶体稳定性外,还是磁热疗治疗的优秀候选物(Illés等人,《J. Magn. Magn. Mater.》2018年,451卷,710 - 720页)。在本工作中,我们通过电位酸碱滴定、吸附等温线测定、红外光谱(傅里叶变换红外衰减全反射光谱,FT - IR ATR)、动态光散射和电动电位测定方法,阐述了P(PEGMA - AA)包覆的MNPs形成的分子背景及其显著的胶体稳定性和耐盐性。如血沉、涂片和白细胞活力实验所示,P(PEGMA - AA)@MNPs具有优异的血液相容性。此外,血清蛋白形成了蛋白质冠层,保护颗粒不发生聚集(在动态光散射和电动电位测量中发现)。我们的新型颗粒也被证明是MRI诊断的有前景的候选物,展现出文献中报道的最高横向弛豫率值之一(451 mM⁻¹s⁻¹)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/62b9d75a20bb/nanomaterials-08-00776-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/55bf4647e9ab/nanomaterials-08-00776-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/b744fef9aa12/nanomaterials-08-00776-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/89c17f4e4874/nanomaterials-08-00776-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/2d2a7157df83/nanomaterials-08-00776-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/113cff018041/nanomaterials-08-00776-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/f35bbba242fc/nanomaterials-08-00776-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/a0cd0901429a/nanomaterials-08-00776-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/862a794d1725/nanomaterials-08-00776-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/4eb48ea921d5/nanomaterials-08-00776-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/ce1dd25d3ee4/nanomaterials-08-00776-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/d2c357fbcfb9/nanomaterials-08-00776-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/62b9d75a20bb/nanomaterials-08-00776-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/55bf4647e9ab/nanomaterials-08-00776-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/b744fef9aa12/nanomaterials-08-00776-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/89c17f4e4874/nanomaterials-08-00776-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/2d2a7157df83/nanomaterials-08-00776-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/113cff018041/nanomaterials-08-00776-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/f35bbba242fc/nanomaterials-08-00776-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/a0cd0901429a/nanomaterials-08-00776-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/862a794d1725/nanomaterials-08-00776-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/4eb48ea921d5/nanomaterials-08-00776-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/ce1dd25d3ee4/nanomaterials-08-00776-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/d2c357fbcfb9/nanomaterials-08-00776-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/6215243/62b9d75a20bb/nanomaterials-08-00776-g012.jpg

相似文献

[1]
PEGylation of Superparamagnetic Iron Oxide Nanoparticles with Self-Organizing Polyacrylate-PEG Brushes for Contrast Enhancement in MRI Diagnosis.

Nanomaterials (Basel). 2018-9-29

[2]
Formation of hydrated PEG layers on magnetic iron oxide nanoflowers shows internal magnetisation dynamics and generates high in-vivo efficacy for MRI and magnetic hyperthermia.

Acta Biomater. 2022-10-15

[3]
Polyethylene glycol–coated and folic acid–conjugated superparamagnetic iron oxide nanoparticles

2004

[4]
Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications.

J Nanobiotechnology. 2018-10-13

[5]
Development of Positively Charged Poly-L-Lysine Magnetic Nanoparticles as Potential MRI Contrast Agent.

Nanomaterials (Basel). 2023-6-9

[6]
Synthesis and characterization of modified magnetic nanoparticles as theranostic agents: in vitro safety assessment in healthy cells.

Toxicol In Vitro. 2021-4

[7]
PEG-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation.

ACS Nano. 2012-12-20

[8]
Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent.

Drug Dev Ind Pharm. 2010-10

[9]
Enhanced stability of polyacrylate-coated magnetite nanoparticles in biorelevant media.

Colloids Surf B Biointerfaces. 2012-2-6

[10]
PLinaS-g-PEG coated magnetic nanoparticles as a contrast agent for hepatocellular carcinoma diagnosis.

J Biomater Sci Polym Ed. 2020-8

引用本文的文献

[1]
A Recent Review on Cancer Nanomedicine.

Cancers (Basel). 2023-4-12

[2]
Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Polymers (Basel). 2023-4-15

[3]
Magnetic Forces by Permanent Magnets to Manipulate Magnetoresponsive Particles in Drug-Targeting Applications.

Micromachines (Basel). 2022-10-25

[4]
Magnetoresponsive Functionalized Nanocomposite Aggregation Kinetics and Chain Formation at the Targeted Site during Magnetic Targeting.

Pharmaceutics. 2022-9-12

[5]
One-Step Preparation of Highly Stable Copper-Zinc Ferrite Nanoparticles in Water Suitable for MRI Thermometry.

Chem Mater. 2022-5-10

[6]
Chimeric nanocomposites for the rapid and simple isolation of urinary extracellular vesicles.

J Extracell Vesicles. 2022-2

[7]
Recent Advances in the Use of Iron-Gold Hybrid Nanoparticles for Biomedical Applications.

Nanomaterials (Basel). 2021-5-6

[8]
Recent Advances in Magnetite Nanoparticle Functionalization for Nanomedicine.

Nanomaterials (Basel). 2019-12-16

[9]
SPIONs Prepared in Air through Improved Synthesis Methodology: The Influence of γ-FeO/FeO Ratio and Coating Composition on Magnetic Properties.

Nanomaterials (Basel). 2019-6-28

[10]
₁-Weight Magnetic Resonance Imaging Performances of Iron Oxide Nanoparticles Modified with a Natural Protein Macromolecule and an Artificial Macromolecule.

Nanomaterials (Basel). 2019-1-30

本文引用的文献

[1]
Serum Protein-Resistant Behavior of Multisite-Bound Poly(ethylene glycol) Chains on Iron Oxide Surfaces.

ACS Omega. 2017-4-5

[2]
Nanomedicine: An effective tool in cancer therapy.

Int J Pharm. 2018-2-7

[3]
Inorganic nanoparticles: A potential cancer therapy for human welfare.

Int J Pharm. 2018-1-31

[4]
Nanotherapeutics in oral and parenteral drug delivery: Key learnings and future outlooks as we think small.

J Control Release. 2018-1-19

[5]
Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics.

Biomaterials. 2017-10-20

[6]
Nanotechnology and primary hemostasis: Differential effects of nanoparticles on platelet responses.

Vascul Pharmacol. 2017-11-22

[7]
Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics.

Nat Commun. 2017-10-3

[8]
Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics.

Drug Discov Today. 2017-4-26

[9]
Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy.

Adv Colloid Interface Sci. 2017-3-14

[10]
Nanoparticles for radiooncology: Mission, vision, challenges.

Biomaterials. 2016-12-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索