Suppr超能文献

使用准SMILES方法开发不同实验条件下纳米颗粒抗癌活性的自一致性模型

Development of Self-Consistency Models of Anticancer Activity of Nanoparticles under Different Experimental Conditions Using Quasi-SMILES Approach.

作者信息

Toropov Andrey A, Toropova Alla P, Leszczynska Danuta, Leszczynski Jerzy

机构信息

Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.

Interdisciplinary Nanotoxicity Center, Department of Civil and Environmental Engineering, Jackson State University, 1325 Lynch Street, Jackson, MS 39217-0510, USA.

出版信息

Nanomaterials (Basel). 2023 Jun 13;13(12):1852. doi: 10.3390/nano13121852.

Abstract

Algorithms of the simulation of the anticancer activity of nanoparticles under different experimental conditions toward cell lines A549 (lung cancer), THP-1 (leukemia), MCF-7 (breast cancer), Caco2 (cervical cancer), and hepG2 (hepatoma) have been developed using the quasi-SMILES approach. This approach is suggested as an efficient tool for the quantitative structure-property-activity relationships (QSPRs/QSARs) analysis of the above nanoparticles. The studied model is built up using the so-called vector of ideality of correlation. The components of this vector include the index of ideality of correlation () and the correlation intensity index (). The epistemological component of this study is the development of methods of registration, storage, and effective use of experimental situations that are comfortable for the researcher-experimentalist in order to be able to control the physicochemical and biochemical consequences of using nanomaterials. The proposed approach differs from the traditional models based on QSPR/QSAR in the following respects: (i) not molecules but experimental situations available in a database are considered; in other words, an answer is offered to the question of how to change the plot of the experiment in order to achieve the desired values of the endpoint being studied; and (ii) the user has the ability to select a list of controlled conditions available in the database that can affect the endpoint and evaluate how significant the influence of the selected controlled experimental conditions is.

摘要

利用准SMILES方法,开发了在不同实验条件下纳米颗粒对A549(肺癌)、THP-1(白血病)、MCF-7(乳腺癌)、Caco2(宫颈癌)和hepG2(肝癌)细胞系抗癌活性的模拟算法。该方法被认为是对上述纳米颗粒进行定量结构-性质-活性关系(QSPRs/QSARs)分析的有效工具。所研究的模型是使用所谓的相关性理想向量建立的。该向量的组成部分包括相关性理想指数()和相关强度指数()。本研究的认识论组成部分是开发对实验研究人员来说舒适的实验情况的记录、存储和有效利用方法,以便能够控制使用纳米材料的物理化学和生化后果。所提出的方法在以下方面不同于基于QSPR/QSAR的传统模型:(i)考虑的不是分子,而是数据库中可用的实验情况;换句话说,它回答了如何改变实验方案以实现所研究终点的期望数值的问题;(ii)用户能够从数据库中选择可能影响终点的受控条件列表,并评估所选受控实验条件的影响有多大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05c4/10304945/b45df176de6f/nanomaterials-13-01852-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验