Gangipamula Venkatesh, Subhani Karamat, Mahon Peter J, Salim Nisa
School of Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia.
Aerostructures Innovation Research (AIR) Hub, Swinburne University of Technology, Melbourne, VIC 3122, Australia.
Nanomaterials (Basel). 2025 Aug 28;15(17):1325. doi: 10.3390/nano15171325.
We have demonstrated the fabrication of laminate composites with functional features to demonstrate energy storage capabilities. The present study investigates the surface modification of carbon fibers by coating dual materials of reduced graphene oxide (rGO) and cellulose-based activated carbon to enhance their energy storage capacitance for the development of structural supercapacitors. The dual coating on carbon fibers enabled a near 210-fold improvement in surface area, surpassing that of pristine carbon fibers. This formed a highly porous graphene network with activated carbon, resulting in a well-connected fiber-graphene-activated carbon network on carbon fibers. The electrochemical supercapacitor, fabricated from surface-functionalized carbon fibers, provides the best performance, with a specific capacitance of 172 F g in an aqueous electrolyte. Furthermore, the symmetrical structural supercapacitor (SSSC) device delivered a specific capacitance of 227 mF g across a wide potential window of 6 V. The electrochemical stability of the SSSC device was validated by a high capacitance retention of 97.3% over 10,000 cycles. Additionally, the study showcased the practical application of this technology by successfully illuminating an LED using the proof-of-concept SSSC device with G-aC/CF electrodes. Overall, the findings of this study highlight the potential of carbon fiber composites as a promising hybrid material, offering both structural integrity and a functional performance suitable for aerospace and automobile applications.
我们已经展示了具有功能特性的层压复合材料的制造,以证明其能量存储能力。本研究通过涂覆还原氧化石墨烯(rGO)和纤维素基活性炭的双材料来研究碳纤维的表面改性,以提高其用于结构超级电容器开发的能量存储电容。碳纤维上的双涂层使表面积提高了近210倍,超过了原始碳纤维。这与活性炭形成了高度多孔的石墨烯网络,在碳纤维上形成了连接良好的纤维 - 石墨烯 - 活性炭网络。由表面功能化碳纤维制成的电化学超级电容器性能最佳,在水性电解质中的比电容为172 F g。此外,对称结构超级电容器(SSSC)装置在6 V的宽电位窗口下的比电容为227 mF g。SSSC装置的电化学稳定性通过在10000次循环中97.3%的高电容保持率得到验证。此外,该研究通过使用具有G - aC/CF电极的概念验证SSSC装置成功点亮LED展示了该技术的实际应用。总体而言,本研究的结果突出了碳纤维复合材料作为一种有前途的混合材料的潜力,兼具适合航空航天和汽车应用的结构完整性和功能性能。