Suppr超能文献

微毒席利科:一个用于预测真菌毒素的诱变、遗传毒性和致癌性的交互式数据库。

MicotoXilico: An Interactive Database to Predict Mutagenicity, Genotoxicity, and Carcinogenicity of Mycotoxins.

机构信息

Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés, Burjasot, 46100 Valencia, Spain.

ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain.

出版信息

Toxins (Basel). 2023 May 24;15(6):355. doi: 10.3390/toxins15060355.

Abstract

Mycotoxins are secondary metabolites produced by certain filamentous fungi. They are common contaminants found in a wide variety of food matrices, thus representing a threat to public health, as they can be carcinogenic, mutagenic, or teratogenic, among other toxic effects. Several hundreds of mycotoxins have been reported, but only a few of them are regulated, due to the lack of data regarding their toxicity and mechanisms of action. Thus, a more comprehensive evaluation of the toxicity of mycotoxins found in foodstuffs is required. In silico toxicology approaches, such as Quantitative Structure-Activity Relationship (QSAR) models, can be used to rapidly assess chemical hazards by predicting different toxicological endpoints. In this work, for the first time, a comprehensive database containing 4360 mycotoxins classified in 170 categories was constructed. Then, specific robust QSAR models for the prediction of mutagenicity, genotoxicity, and carcinogenicity were generated, showing good accuracy, precision, sensitivity, and specificity. It must be highlighted that the developed QSAR models are compliant with the OECD regulatory criteria, and they can be used for regulatory purposes. Finally, all data were integrated into a web server that allows the exploration of the mycotoxin database and toxicity prediction. In conclusion, the developed tool is a valuable resource for scientists, industry, and regulatory agencies to screen the mutagenicity, genotoxicity, and carcinogenicity of non-regulated mycotoxins.

摘要

真菌毒素是某些丝状真菌产生的次生代谢物。它们是广泛存在于各种食品基质中的常见污染物,因此对公众健康构成威胁,因为它们具有致癌、致突变或致畸等毒性作用。已经报道了数百种真菌毒素,但由于缺乏关于其毒性和作用机制的数据,只有少数几种受到监管。因此,需要对食品中发现的真菌毒素的毒性进行更全面的评估。基于计算机的毒理学方法,如定量构效关系(QSAR)模型,可以通过预测不同的毒理学终点来快速评估化学危害。在这项工作中,首次构建了一个包含 4360 种真菌毒素的综合数据库,这些真菌毒素分为 170 类。然后,生成了用于预测致突变性、遗传毒性和致癌性的特定稳健 QSAR 模型,这些模型具有良好的准确性、精度、灵敏度和特异性。必须强调的是,开发的 QSAR 模型符合 OECD 的监管标准,可用于监管目的。最后,所有数据都集成到一个网络服务器中,允许探索真菌毒素数据库和毒性预测。总之,该开发的工具是科学家、工业界和监管机构筛选非监管真菌毒素的致突变性、遗传毒性和致癌性的有价值的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51c/10301946/53d7288da4d7/toxins-15-00355-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验