Suppr超能文献

开发基于人工智能的虚拟患者模型以实时诊断急性呼吸窘迫综合征。

Developing an Artificial Intelligence-Based Representation of a Virtual Patient Model for Real-Time Diagnosis of Acute Respiratory Distress Syndrome.

作者信息

Barakat Chadi S, Sharafutdinov Konstantin, Busch Josefine, Saffaran Sina, Bates Declan G, Hardman Jonathan G, Schuppert Andreas, Brynjólfsson Sigurður, Fritsch Sebastian, Riedel Morris

机构信息

Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany.

School of Engineering and Natural Science, University of Iceland, 107 Reykjavik, Iceland.

出版信息

Diagnostics (Basel). 2023 Jun 17;13(12):2098. doi: 10.3390/diagnostics13122098.

Abstract

Acute Respiratory Distress Syndrome (ARDS) is a condition that endangers the lives of many Intensive Care Unit patients through gradual reduction of lung function. Due to its heterogeneity, this condition has been difficult to diagnose and treat, although it has been the subject of continuous research, leading to the development of several tools for modeling disease progression on the one hand, and guidelines for diagnosis on the other, mainly the "Berlin Definition". This paper describes the development of a deep learning-based surrogate model of one such tool for modeling ARDS onset in a virtual patient: the Nottingham Physiology Simulator. The model-development process takes advantage of current machine learning and data-analysis techniques, as well as efficient hyperparameter-tuning methods, within a high-performance computing-enabled data science platform. The lightweight models developed through this process present comparable accuracy to the original simulator (per-parameter R > 0.90). The experimental process described herein serves as a proof of concept for the rapid development and dissemination of specialised diagnosis support systems based on pre-existing generalised mechanistic models, making use of supercomputing infrastructure for the development and testing processes and supported by open-source software for streamlined implementation in clinical routines.

摘要

急性呼吸窘迫综合征(ARDS)是一种通过逐渐降低肺功能危及许多重症监护病房患者生命的病症。由于其异质性,尽管该病症一直是持续研究的主题,一方面导致了几种用于模拟疾病进展的工具的开发,另一方面也产生了诊断指南,主要是“柏林定义”,但这种病症一直难以诊断和治疗。本文描述了一种基于深度学习的替代模型的开发,该模型用于在虚拟患者中模拟ARDS发病的一种此类工具:诺丁汉生理学模拟器。模型开发过程利用了当前的机器学习和数据分析技术,以及高效的超参数调整方法,在一个支持高性能计算的数据科学平台内进行。通过这一过程开发的轻量级模型与原始模拟器具有相当的准确性(参数R>0.90)。本文所述的实验过程为基于预先存在的通用机制模型快速开发和传播专门的诊断支持系统提供了概念验证,利用超级计算基础设施进行开发和测试过程,并由开源软件支持以便在临床常规中进行简化实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3eb5/10297554/f7d6dda803ca/diagnostics-13-02098-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验