Suppr超能文献

基于深度学习的自动肺CT分割和急性呼吸窘迫综合征预测框架的开发与验证:一项多中心队列研究

Development and validation of a deep learning-based framework for automated lung CT segmentation and acute respiratory distress syndrome prediction: a multicenter cohort study.

作者信息

Zhou Yang, Mei Shuya, Wang Jiemin, Xu Qiaoyi, Zhang Zhiyun, Qin Shaojie, Feng Jinhua, Li Congye, Xing Shunpeng, Wang Wei, Zhang Xiaolin, Li Feng, Zhou Quanhong, He Zhengyu, Gao Yuan

机构信息

Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

EClinicalMedicine. 2024 Jul 26;75:102772. doi: 10.1016/j.eclinm.2024.102772. eCollection 2024 Sep.

Abstract

BACKGROUND

Acute respiratory distress syndrome (ARDS) is a life-threatening condition with a high incidence and mortality rate in intensive care unit (ICU) admissions. Early identification of patients at high risk for developing ARDS is crucial for timely intervention and improved clinical outcomes. However, the complex pathophysiology of ARDS makes early prediction challenging. This study aimed to develop an artificial intelligence (AI) model for automated lung lesion segmentation and early prediction of ARDS to facilitate timely intervention in the intensive care unit.

METHODS

A total of 928 ICU patients with chest computed tomography (CT) scans were included from November 2018 to November 2021 at three centers in China. Patients were divided into a retrospective cohort for model development and internal validation, and three independent cohorts for external validation. A deep learning-based framework using the UNet Transformer (UNETR) model was developed to perform the segmentation of lung lesions and early prediction of ARDS. We employed various data augmentation techniques using the Medical Open Network for AI (MONAI) framework, enhancing the training sample diversity and improving the model's generalization capabilities. The performance of the deep learning-based framework was compared with a Densenet-based image classification network and evaluated in external and prospective validation cohorts. The segmentation performance was assessed using the Dice coefficient (DC), and the prediction performance was assessed using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The contributions of different features to ARDS prediction were visualized using Shapley Explanation Plots. This study was registered with the China Clinical Trial Registration Centre (ChiCTR2200058700).

FINDINGS

The segmentation task using the deep learning framework achieved a DC of 0.734 ± 0.137 in the validation set. For the prediction task, the deep learning-based framework achieved AUCs of 0.916 [0.858-0.961], 0.865 [0.774-0.945], 0.901 [0.835-0.955], and 0.876 [0.804-0.936] in the internal validation cohort, external validation cohort I, external validation cohort II, and prospective validation cohort, respectively. It outperformed the Densenet-based image classification network in terms of prediction accuracy. Moreover, the ARDS prediction model identified lung lesion features and clinical parameters such as C-reactive protein, albumin, bilirubin, platelet count, and age as significant contributors to ARDS prediction.

INTERPRETATION

The deep learning-based framework using the UNETR model demonstrated high accuracy and robustness in lung lesion segmentation and early ARDS prediction, and had good generalization ability and clinical applicability.

FUNDING

This study was supported by grants from the Shanghai Renji Hospital Clinical Research Innovation and Cultivation Fund (RJPY-DZX-008) and Shanghai Science and Technology Development Funds (22YF1423300).

摘要

背景

急性呼吸窘迫综合征(ARDS)是一种危及生命的疾病,在重症监护病房(ICU)收治患者中发病率和死亡率较高。早期识别有发生ARDS高风险的患者对于及时干预和改善临床结局至关重要。然而,ARDS复杂的病理生理学使得早期预测具有挑战性。本研究旨在开发一种人工智能(AI)模型,用于自动肺病变分割和ARDS的早期预测,以促进在重症监护病房的及时干预。

方法

2018年11月至2021年11月期间,在中国三个中心纳入了928例接受胸部计算机断层扫描(CT)的ICU患者。患者被分为用于模型开发和内部验证的回顾性队列,以及用于外部验证的三个独立队列。开发了一种基于深度学习的框架,使用UNet Transformer(UNETR)模型进行肺病变分割和ARDS的早期预测。我们使用医学人工智能开放网络(MONAI)框架采用了各种数据增强技术,增强了训练样本的多样性并提高了模型的泛化能力。将基于深度学习的框架的性能与基于Densenet的图像分类网络进行比较,并在外部和前瞻性验证队列中进行评估。使用Dice系数(DC)评估分割性能,使用受试者操作特征曲线下面积(AUC)、敏感性和特异性评估预测性能。使用Shapley解释图可视化不同特征对ARDS预测的贡献。本研究已在中国临床试验注册中心注册(ChiCTR2200058700)。

结果

使用深度学习框架的分割任务在验证集中的DC为0.734±0.137。对于预测任务,基于深度学习的框架在内部验证队列、外部验证队列I、外部验证队列II和前瞻性验证队列中的AUC分别为0.916[0.858 - 0.961]、0.865[0.774 - 0.945]、0.901[0.835 - 0.955]和0.876[0.8 — 0.936]。在预测准确性方面,它优于基于Densenet的图像分类网络。此外,ARDS预测模型确定肺病变特征和临床参数,如C反应蛋白、白蛋白、胆红素、血小板计数和年龄是ARDS预测的重要因素。

解读

使用UNETR模型的基于深度学习的框架在肺病变分割和早期ARDS预测中表现出高准确性和稳健性,并且具有良好的泛化能力和临床适用性。

资金

本研究得到了上海仁济医院临床研究创新与培育基金(RJPY-DZX-008)和上海市科学技术发展基金(22YF1423300)的资助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e556/11338113/5b86ad2468da/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验