Ayunts Hrach, Grigoryan Artyom, Agaian Sos
Informatics and Applied Mathematics Department, Yerevan State University, Yerevan 0025, Armenia.
Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
Entropy (Basel). 2024 Apr 28;26(5):374. doi: 10.3390/e26050374.
This paper addresses the critical need for precise thermal modeling in electronics, where temperature significantly impacts system reliability. We emphasize the necessity of accurate temperature measurement and uncertainty quantification in thermal imaging, a vital tool across multiple industries. Current mathematical models and uncertainty measures, such as Rényi and Shannon entropies, are inadequate for the detailed informational content required in thermal images. Our work introduces a novel entropy that effectively captures the informational content of thermal images by combining local and global data, surpassing existing metrics. Validated by rigorous experimentation, this method enhances thermal images' reliability and information preservation. We also present two enhancement frameworks that integrate an optimized genetic algorithm and image fusion techniques, improving image quality by reducing artifacts and enhancing contrast. These advancements offer significant contributions to thermal imaging and uncertainty quantification, with broad applications in various sectors.
本文探讨了电子学中精确热建模的迫切需求,其中温度对系统可靠性有显著影响。我们强调了热成像中精确温度测量和不确定性量化的必要性,热成像是多个行业的重要工具。当前的数学模型和不确定性度量,如雷尼熵和香农熵,不足以满足热图像所需的详细信息内容。我们的工作引入了一种新颖的熵,通过结合局部和全局数据有效地捕捉热图像的信息内容,超越了现有指标。经过严格实验验证,该方法提高了热图像的可靠性和信息保留。我们还提出了两个增强框架,它们集成了优化的遗传算法和图像融合技术,通过减少伪像和增强对比度来提高图像质量。这些进展为热成像和不确定性量化做出了重大贡献,在各个领域都有广泛应用。