Moldoveanu Matei, Zaidi Abdellatif
Laboratoire d'Informatique Gaspard-Monge, Université Paris-Est, 77454 Marne-la-Vallée, France.
Mathematical and Algorithmic Sciences Lab, Paris Research Center, Huawei Technologies, 92100 Boulogne-Billancourt, France.
Entropy (Basel). 2023 Jun 10;25(6):920. doi: 10.3390/e25060920.
In this paper, we study distributed inference and learning over networks which can be modeled by a directed graph. A subset of the nodes observes different features, which are all relevant/required for the inference task that needs to be performed at some distant end (fusion) node. We develop a learning algorithm and an architecture that can combine the information from the observed distributed features, using the processing units available across the networks. In particular, we employ information-theoretic tools to analyze how inference propagates and fuses across a network. Based on the insights gained from this analysis, we derive a loss function that effectively balances the model's performance with the amount of information transmitted across the network. We study the design criterion of our proposed architecture and its bandwidth requirements. Furthermore, we discuss implementation aspects using neural networks in typical wireless radio access and provide experiments that illustrate benefits over state-of-the-art techniques.
在本文中,我们研究了可由有向图建模的网络上的分布式推理与学习。节点的一个子集观察不同的特征,这些特征对于需要在某个远端(融合)节点执行的推理任务而言都是相关的/必需的。我们开发了一种学习算法和一种架构,该架构能够利用网络中可用的处理单元来组合来自观察到的分布式特征的信息。特别地,我们使用信息论工具来分析推理如何在网络中传播和融合。基于从该分析中获得的见解,我们推导了一个损失函数,该函数能有效地在模型性能与网络中传输的信息量之间取得平衡。我们研究了所提出架构的设计准则及其带宽要求。此外,我们讨论了在典型无线接入中使用神经网络的实现方面,并提供了实验,这些实验说明了相对于现有技术的优势。