García-Torrecillas Juan Manuel, Lea-Pereira María Carmen, Alonso-Morillejo Enrique, Moreno-Millán Emilio, de la Fuente-Arias Jesús
Emergency and Research Unit, Torrecárdenas University Hospital, 04009 Almería, Spain.
CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.
J Pers Med. 2023 Jun 13;13(6):995. doi: 10.3390/jpm13060995.
: Among the clinical predictors of a heart failure (HF) prognosis, different personal factors have been established in previous research, mainly age, gender, anemia, renal insufficiency and diabetes, as well as mediators (pulmonary embolism, hypertension, chronic obstructive pulmonary disease (COPD), arrhythmias and dyslipidemia). We do not know the role played by contextual and individual factors in the prediction of in-hospital mortality. : The present study has added hospital and management factors (year, type of hospital, length of stay, number of diagnoses and procedures, and readmissions) in predicting exitus to establish a structural predictive model. The project was approved by the Ethics Committee of the province of Almeria. : A total of 529,606 subjects participated, through databases of the Spanish National Health System. A predictive model was constructed using correlation analysis (SPSS 24.0) and structural equation models (SEM) analysis (AMOS 20.0) that met the appropriate statistical values (chi-square, usually fit indices and the root-mean-square error approximation) which met the criteria of statistical significance. Individual factors, such as age, gender and chronic obstructive pulmonary disease, were found to positively predict mortality risk. Isolated contextual factors (hospitals with a greater number of beds, especially, and also the number of procedures performed, which negatively predicted the risk of death. : It was, therefore, possible to introduce contextual variables to explain the behavior of mortality in patients with HF. The size or level of large hospital complexes, as well as procedural effort, are key contextual variables in estimating the risk of mortality in HF.
在心力衰竭(HF)预后的临床预测因素中,先前的研究已经确定了不同的个人因素,主要是年龄、性别、贫血、肾功能不全和糖尿病,以及介导因素(肺栓塞、高血压、慢性阻塞性肺疾病(COPD)、心律失常和血脂异常)。我们尚不清楚背景因素和个体因素在预测住院死亡率中所起的作用。
本研究在预测死亡时加入了医院和管理因素(年份、医院类型、住院时间、诊断和手术数量以及再入院情况),以建立一个结构预测模型。该项目获得了阿尔梅里亚省伦理委员会的批准。
共有529,606名受试者通过西班牙国家卫生系统的数据库参与研究。使用相关分析(SPSS 24.0)和结构方程模型(SEM)分析(AMOS 20.0)构建了一个预测模型,该模型满足适当的统计值(卡方、常用拟合指数和均方根误差近似值),符合统计学意义标准。发现年龄、性别和慢性阻塞性肺疾病等个体因素能正向预测死亡风险。孤立的背景因素(尤其是病床数量较多的医院,以及手术数量)能负向预测死亡风险。
因此,有可能引入背景变量来解释HF患者的死亡行为。大型医院综合体的规模或级别以及手术工作量是估计HF患者死亡风险的关键背景变量。