Yang Jingwen, Huang Ziqiang, Wang Dawei, Liu Tao, Sun Xin, Qian Lewen, Pan Zhecheng, Xu Saisheng, Wang Chen, Wu Chunlei, Xu Min, Zhang David Wei
School of Microelectronics, Fudan University, Shanghai 200433, China.
Shanghai Integrated Circuit Manufacturing Innovation Center Co., Ltd., Shanghai 201203, China.
Micromachines (Basel). 2023 May 24;14(6):1107. doi: 10.3390/mi14061107.
In this paper, a novel scheme for source/drain-first (S/D-first) full bottom dielectric isolation (BDI), i.e., Full BDI_Last, with integration of a sacrificial SiGe layer was proposed and demonstrated in a stacked Si nanosheet gate-all-around (NS-GAA) device structure using TCAD simulations. The proposed full BDI scheme flow is compatible with the main process flow of NS-GAA transistor fabrication and provides a large window for process fluctuations, such as the thickness of the S/D recess. It is an ingenious solution to insert the dielectric material under the source, drain and gate regions to remove the parasitic channel. Moreover, because the S/D-first scheme decreases the problem of high-quality S/D epitaxy, the innovative fabrication scheme introduces full BDI formation after S/D epitaxy to mitigate the difficulty of providing stress engineering in the full BDI formation before S/D epitaxy (Full BDI_First). The electrical performance of Full BDI_Last is demonstrated by a 4.78-fold increase in the drive current compared to Full BDI_First. Furthermore, compared to traditional punch through stoppers (PTSs), the proposed Full BDI_Last technology could potentially provide an improved short channel behavior and good immunity against parasitic gate capacitance in NS-GAA devices. For the assessed inverter ring oscillator (RO), applying the Full BDI_Last scheme allows the operating speed to be increased by 15.2% and 6.2% at the same power, or alternatively enables an 18.9% and 6.8% lower power consumption at the same speed compared with the PTS and Full BDI_First schemes, respectively. The observations confirm that the novel Full BDI_Last scheme incorporated into an NS-GAA device can be utilized to enable superior characteristics to benefit the performance of integrated circuits.
在本文中,提出了一种新颖的源极/漏极优先(S/D优先)全底部介质隔离(BDI)方案,即全BDI_Last,并通过TCAD模拟在堆叠式硅纳米片全栅极环绕(NS-GAA)器件结构中集成了牺牲SiGe层进行了演示。所提出的全BDI方案流程与NS-GAA晶体管制造的主要工艺流程兼容,并为工艺波动提供了较大的窗口,例如S/D凹槽的厚度。在源极、漏极和栅极区域下方插入介电材料以去除寄生沟道是一种巧妙的解决方案。此外,由于S/D优先方案减少了高质量S/D外延的问题,这种创新的制造方案在S/D外延之后引入全BDI形成,以减轻在S/D外延之前进行全BDI形成时提供应力工程的难度(全BDI_First)。与全BDI_First相比,全BDI_Last的驱动电流增加了4.78倍,证明了其电学性能。此外,与传统的穿通阻挡层(PTS)相比,所提出的全BDI_Last技术有可能在NS-GAA器件中提供更好的短沟道特性和对寄生栅电容的良好免疫能力。对于评估的反相器环形振荡器(RO),应用全BDI_Last方案分别与PTS和全BDI_First方案相比,在相同功率下可使工作速度提高15.2%和6.2%,或者在相同速度下功耗分别降低18.9%和6.8%。这些观察结果证实,纳入NS-GAA器件的新型全BDI_Last方案可用于实现卓越特性,从而有利于集成电路的性能。