Traverso Agata Noelia, Fragale David José, Viale Diego Luis, Garate Octavio, Torres Pablo, Valverde Gastón, Berra Alejandro, Torbidoni Ana Vanesa, Yakisich Juan Sebastián, Grasselli Mariano, Radrizzani Martín
Neuro and Molecular Cytogenetics Laboratory, Institute of Emerging Technologies and Applied Sciences (ITECA), National Council for Scientific and Technical Research (CONICET), School of Science and Technology, National University of San Martín, Av. Gral. Paz 5445, San Martín B1650, Argentina.
Nanomateriales Funcionales, INTI-Micro y Nanotecnología, Instituto Nacional de Tecnología Industrial, San Martín B1650, Argentina.
Pharmaceutics. 2023 Jun 3;15(6):1651. doi: 10.3390/pharmaceutics15061651.
Decoration of nanoparticles with specific molecules such as antibodies, peptides, and proteins that preserve their biological properties is essential for the recognition and internalization of their specific target cells. Inefficient preparation of such decorated nanoparticles leads to nonspecific interactions diverting them from their desired target. We report a simple two-step procedure for the preparation of biohybrid nanoparticles containing a core of hydrophobic quantum dots coated with a multilayer of human serum albumin. These nanoparticles were prepared by ultra-sonication, crosslinked using glutaraldehyde, and decorated with proteins such as human serum albumin or human transferrin in their native conformations. These nanoparticles were homogeneous in size (20-30 nm), retained the fluorescent properties of quantum dots, and did not show a "corona effect" in the presence of serum. The uptake of transferrin-decorated quantum dot nanoparticles was observed in A549 lung cancer and SH-SY5Y neuroblastoma cells but not in non-cancerous 16HB14o- or retinoic acid dopaminergic neurons differentiated SH-SY5Y cells. Furthermore, digitoxin-loaded transferrin-decorated nanoparticles decreased the number of A549 cells without effect on 16HB14o-. Finally, we analyzed the in vivo uptake of these biohybrids by murine retinal cells, demonstrating their capacity to selectively target and deliver into specific cell types with excellent traceability.
用抗体、肽和蛋白质等特定分子修饰纳米颗粒,同时保持其生物学特性,对于识别和内化其特定靶细胞至关重要。此类修饰纳米颗粒制备效率低下会导致非特异性相互作用,使其偏离预期靶点。我们报告了一种简单的两步法,用于制备生物杂交纳米颗粒,其核心为涂覆有多层人血清白蛋白的疏水性量子点。这些纳米颗粒通过超声处理制备,用戊二醛交联,并以天然构象用诸如人血清白蛋白或人转铁蛋白等蛋白质进行修饰。这些纳米颗粒尺寸均匀(20 - 30纳米),保留了量子点的荧光特性,并且在血清存在下未显示出“冠层效应”。在A549肺癌细胞和SH - SY5Y神经母细胞瘤细胞中观察到转铁蛋白修饰的量子点纳米颗粒的摄取,但在非癌性16HB14o - 细胞或经视黄酸分化的多巴胺能神经元SH - SY5Y细胞中未观察到。此外,载有洋地黄毒苷的转铁蛋白修饰纳米颗粒减少了A549细胞的数量,而对16HB14o - 细胞无影响。最后,我们分析了这些生物杂交体在小鼠视网膜细胞中的体内摄取情况,证明它们能够选择性地靶向并递送至特定细胞类型,且具有出色的可追溯性。