Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany.
Institute of Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany.
Front Immunol. 2023 Jun 12;14:1121864. doi: 10.3389/fimmu.2023.1121864. eCollection 2023.
Hypoxia contributes to numerous pathophysiological conditions including inflammation-associated diseases. We characterized the impact of hypoxia on the immunometabolic cross-talk between cholesterol and interferon (IFN) responses. Specifically, hypoxia reduced cholesterol biosynthesis flux and provoked a compensatory activation of sterol regulatory element-binding protein 2 (SREBP2) in monocytes. Concomitantly, a broad range of interferon-stimulated genes (ISGs) increased under hypoxia in the absence of an inflammatory stimulus. While changes in cholesterol biosynthesis intermediates and SREBP2 activity did not contribute to hypoxic ISG induction, intracellular cholesterol distribution appeared critical to enhance hypoxic expression of chemokine ISGs. Importantly, hypoxia further boosted chemokine ISG expression in monocytes upon infection with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Mechanistically, hypoxia sensitized toll-like receptor 4 (TLR4) signaling to activation by SARS-CoV-2 spike protein, which emerged as a major signaling hub to enhance chemokine ISG induction following SARS-CoV-2 infection of hypoxic monocytes. These data depict a hypoxia-regulated immunometabolic mechanism with implications for the development of systemic inflammatory responses in severe cases of coronavirus disease-2019 (COVID-19).
缺氧会导致许多病理生理状况,包括与炎症相关的疾病。我们研究了缺氧对胆固醇和干扰素 (IFN) 反应之间免疫代谢交叉对话的影响。具体来说,缺氧会降低胆固醇生物合成通量,并在单核细胞中引发固醇调节元件结合蛋白 2 (SREBP2) 的代偿性激活。同时,在没有炎症刺激的情况下,广泛的干扰素刺激基因 (ISG) 在缺氧条件下增加。虽然胆固醇生物合成中间产物和 SREBP2 活性的变化与缺氧诱导的 ISG 无关,但细胞内胆固醇分布似乎对增强趋化因子 ISG 的缺氧表达至关重要。重要的是,在感染严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 后,缺氧进一步增强了单核细胞中趋化因子 ISG 的表达。从机制上讲,缺氧使 Toll 样受体 4 (TLR4) 信号对 SARS-CoV-2 刺突蛋白的激活敏感,刺突蛋白成为增强 SARS-CoV-2 感染缺氧单核细胞后趋化因子 ISG 诱导的主要信号枢纽。这些数据描绘了一种受缺氧调节的免疫代谢机制,可能对严重 2019 年冠状病毒病 (COVID-19) 全身炎症反应的发展有影响。