Suppr超能文献

家族性高胆固醇血症中遗传变异的预测建模和结构分析:对诊断和蛋白质相互作用研究的影响。

Predictive Modeling and Structure Analysis of Genetic Variants in Familial Hypercholesterolemia: Implications for Diagnosis and Protein Interaction Studies.

机构信息

Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain.

Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain.

出版信息

Curr Atheroscler Rep. 2023 Nov;25(11):839-859. doi: 10.1007/s11883-023-01154-7. Epub 2023 Oct 17.

Abstract

PURPOSE OF REVIEW

Familial hypercholesterolemia (FH) is a hereditary condition characterized by elevated levels of low-density lipoprotein cholesterol (LDL-C), which increases the risk of cardiovascular disease if left untreated. This review aims to discuss the role of bioinformatics tools in evaluating the pathogenicity of missense variants associated with FH. Specifically, it highlights the use of predictive models based on protein sequence, structure, evolutionary conservation, and other relevant features in identifying genetic variants within LDLR, APOB, and PCSK9 genes that contribute to FH.

RECENT FINDINGS

In recent years, various bioinformatics tools have emerged as valuable resources for analyzing missense variants in FH-related genes. Tools such as REVEL, Varity, and CADD use diverse computational approaches to predict the impact of genetic variants on protein function. These tools consider factors such as sequence conservation, structural alterations, and receptor binding to aid in interpreting the pathogenicity of identified missense variants. While these predictive models offer valuable insights, the accuracy of predictions can vary, especially for proteins with unique characteristics that might not be well represented in the databases used for training. This review emphasizes the significance of utilizing bioinformatics tools for assessing the pathogenicity of FH-associated missense variants. Despite their contributions, a definitive diagnosis of a genetic variant necessitates functional validation through in vitro characterization or cascade screening. This step ensures the precise identification of FH-related variants, leading to more accurate diagnoses. Integrating genetic data with reliable bioinformatics predictions and functional validation can enhance our understanding of the genetic basis of FH, enabling improved diagnosis, risk stratification, and personalized treatment for affected individuals. The comprehensive approach outlined in this review promises to advance the management of this inherited disorder, potentially leading to better health outcomes for those affected by FH.

摘要

综述目的

家族性高胆固醇血症(FH)是一种遗传性疾病,其特征为低密度脂蛋白胆固醇(LDL-C)水平升高,如果不加以治疗,会增加心血管疾病的风险。本综述旨在讨论生物信息学工具在评估与 FH 相关的错义变异体的致病性中的作用。具体而言,本文强调了使用基于蛋白质序列、结构、进化保守性和其他相关特征的预测模型来识别 LDLR、APOB 和 PCSK9 基因中导致 FH 的遗传变异。

最近的发现

近年来,各种生物信息学工具已成为分析 FH 相关基因中错义变异体的有价值资源。REVEL、Varity 和 CADD 等工具使用各种计算方法来预测遗传变异对蛋白质功能的影响。这些工具考虑了序列保守性、结构改变和受体结合等因素,以帮助解释鉴定出的错义变异体的致病性。虽然这些预测模型提供了有价值的见解,但预测的准确性可能会有所不同,尤其是对于那些在用于训练的数据库中没有很好体现的具有独特特征的蛋白质。本综述强调了利用生物信息学工具评估 FH 相关错义变异体致病性的重要性。尽管这些工具具有重要作用,但要确定遗传变异的致病性,仍需要通过体外特征分析或级联筛查等功能验证来进行。这一步骤确保了 FH 相关变异体的精确鉴定,从而实现更准确的诊断。将遗传数据与可靠的生物信息学预测和功能验证相结合,可以增强我们对 FH 遗传基础的理解,从而为受影响个体提供更准确的诊断、风险分层和个性化治疗。本综述中概述的综合方法有望推进这种遗传性疾病的管理,从而为 FH 患者带来更好的健康结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06cc/10618353/4a8bff5db0d2/11883_2023_1154_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验