Suppr超能文献

使用 6 种机器学习算法预测 COVID-19 患者的死亡率。

Predicting Mortality in COVID-19 Patients Using 6 Machine Learning Algorithms.

机构信息

Health Informatics Laboratory, Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece.

出版信息

Stud Health Technol Inform. 2023 Jun 29;305:115-118. doi: 10.3233/SHTI230437.

Abstract

In late 2019, COVID-19 appeared and has since spread worldwide as the new pandemic, causing more than 6 million deaths. In dealing with this global crisis, the contribution of Artificial Intelligence was also important through the possibilities of creating predictive models through Machine Learning algorithms, which are already successfully applied to solving a multitude of problems, for many scientific fields. This work aims to find the best model for predicting the mortality of patients with COVID-19, through the comparison of 6 classification algorithms, i.e. Logistic Regression, Decision Trees, Random Forest, eXtreme Gradient Boosting, Multi-Layer Perceptrons, K-Nearest Neighbors. We used a dataset containing more than 12 million cases which was cleansed, modified, and tested for each model. The best model is XGBoost (Precision: 0.93764, Recall: 0.95472, F1-score: 0.9113, AUC_ROC: 0.97855 and Runtime: 6.67306 sec), which is recommended for the prediction and priority treatment of patients with high mortality risk.

摘要

2019 年末,COVID-19 出现并迅速在全球范围内传播,成为新的大流行病,导致超过 600 万人死亡。在应对这场全球危机时,人工智能的贡献也很重要,它通过机器学习算法创建预测模型的可能性,已经成功地应用于解决许多科学领域的大量问题。本研究旨在通过比较 6 种分类算法(即逻辑回归、决策树、随机森林、极端梯度提升、多层感知机和 K 最近邻),找到预测 COVID-19 患者死亡率的最佳模型。我们使用了一个包含超过 1200 万例病例的数据集,对每个模型进行了清理、修改和测试。最好的模型是 XGBoost(精度:0.93764、召回率:0.95472、F1 得分:0.9113、AUC_ROC:0.97855 和运行时间:6.67306 秒),建议用于预测和优先治疗高死亡率风险的患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验