Suppr超能文献

深度局部分析方法可以对蛋白质-蛋白质界面进行解构,并准确估计突变对结合亲和力的影响。

Deep Local Analysis deconstructs protein-protein interfaces and accurately estimates binding affinity changes upon mutation.

机构信息

Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Sorbonne Université, CNRS, IBPS, Paris 75005, France.

出版信息

Bioinformatics. 2023 Jun 30;39(39 Suppl 1):i544-i552. doi: 10.1093/bioinformatics/btad231.

Abstract

MOTIVATION

The spectacular recent advances in protein and protein complex structure prediction hold promise for reconstructing interactomes at large-scale and residue resolution. Beyond determining the 3D arrangement of interacting partners, modeling approaches should be able to unravel the impact of sequence variations on the strength of the association.

RESULTS

In this work, we report on Deep Local Analysis, a novel and efficient deep learning framework that relies on a strikingly simple deconstruction of protein interfaces into small locally oriented residue-centered cubes and on 3D convolutions recognizing patterns within cubes. Merely based on the two cubes associated with the wild-type and the mutant residues, DLA accurately estimates the binding affinity change for the associated complexes. It achieves a Pearson correlation coefficient of 0.735 on about 400 mutations on unseen complexes. Its generalization capability on blind datasets of complexes is higher than the state-of-the-art methods. We show that taking into account the evolutionary constraints on residues contributes to predictions. We also discuss the influence of conformational variability on performance. Beyond the predictive power on the effects of mutations, DLA is a general framework for transferring the knowledge gained from the available non-redundant set of complex protein structures to various tasks. For instance, given a single partially masked cube, it recovers the identity and physicochemical class of the central residue. Given an ensemble of cubes representing an interface, it predicts the function of the complex.

AVAILABILITY AND IMPLEMENTATION

Source code and models are available at http://gitlab.lcqb.upmc.fr/DLA/DLA.git.

摘要

动机

蛋白质和蛋白质复合物结构预测的最新进展令人瞩目,有望在大规模和残基分辨率上重建相互作用组。除了确定相互作用伙伴的 3D 排列外,建模方法还应该能够揭示序列变异对关联强度的影响。

结果

在这项工作中,我们报告了深度局部分析(Deep Local Analysis),这是一种新颖而高效的深度学习框架,它依赖于将蛋白质界面惊人地简化为小的局部定向残基中心立方,并通过 3D 卷积识别立方内的模式。仅仅基于与野生型和突变残基相关的两个立方,DLA 就能准确估计相关复合物的结合亲和力变化。它在未见过的复合物上约 400 个突变的 Pearson 相关系数达到 0.735。它在盲数据集复合物上的泛化能力高于最新方法。我们表明,考虑残基的进化约束有助于预测。我们还讨论了构象可变性对性能的影响。除了对突变影响的预测能力外,DLA 还是一个通用框架,可以将从可用的非冗余复杂蛋白质结构集合中获得的知识转移到各种任务中。例如,给定一个单个部分屏蔽的立方,它可以恢复中心残基的身份和物理化学类别。给定代表接口的立方集合,它可以预测复合物的功能。

可用性和实现

源代码和模型可在 http://gitlab.lcqb.upmc.fr/DLA/DLA.git 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0ee/10311296/e7bbded38ad7/btad231f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验