Suppr超能文献

InDeepNet:一个使用InDeep预测蛋白质功能结合位点的网络平台。

InDeepNet: a web platform for predicting functional binding sites in proteins using InDeep.

作者信息

Mareuil Fabien, Torchet Rachel, Ruano Luis Checa, Mallet Vincent, Nilges Michael, Bouvier Guillaume, Sperandio Olivier

机构信息

Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France.

Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris, CNRS UMR3528, Paris F-75015, France.

出版信息

Nucleic Acids Res. 2025 Jul 7;53(W1):W324-W329. doi: 10.1093/nar/gkaf403.

Abstract

Predicting functional binding sites in proteins is crucial for understanding protein-protein interactions (PPIs) and identifying drug targets. While various computational approaches exist, many fail to assess PPI ligandability, which often involves conformational changes. We introduce InDeepNet, a web-based platform integrating InDeep, a deep-learning model for binding site prediction, with InDeepHolo, which evaluates a site's propensity to adopt a ligand-bound (holo) conformation. InDeepNet provides an intuitive interface for researchers to upload protein structures from in-house data, the Protein Data Bank (PDB), or AlphaFold, predicting potential binding sites for proteins or small molecules. Results are presented as interactive 3D visualizations via Mol*, facilitating structural analysis. With InDeepHolo, the platform helps select conformations optimal for small-molecule binding, improving structure-based drug design. Accessible at https://indeep-net.gpu.pasteur.cloud/, InDeepNet removes the need for specialized coding skills or high-performance computing, making advanced predictive models widely available. By streamlining PPI target assessment and ligandability prediction, it assists research and supports therapeutic development targeting PPIs.

摘要

预测蛋白质中的功能性结合位点对于理解蛋白质-蛋白质相互作用(PPI)和识别药物靶点至关重要。虽然存在各种计算方法,但许多方法无法评估PPI的配体结合能力,而这通常涉及构象变化。我们引入了InDeepNet,这是一个基于网络的平台,它将用于结合位点预测的深度学习模型InDeep与评估位点采用配体结合(全酶)构象倾向的InDeepHolo整合在一起。InDeepNet为研究人员提供了一个直观的界面,以便他们从内部数据、蛋白质数据库(PDB)或AlphaFold上传蛋白质结构,预测蛋白质或小分子的潜在结合位点。结果通过Mol*以交互式3D可视化的形式呈现,便于进行结构分析。借助InDeepHolo,该平台有助于选择最适合小分子结合的构象,从而改进基于结构的药物设计。InDeepNet可在https://indeep-net.gpu.pasteur.cloud/上访问,它消除了对专业编码技能或高性能计算的需求,使先进的预测模型广泛可用。通过简化PPI靶点评估和配体结合能力预测,它有助于研究并支持针对PPI的治疗开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63aa/12230713/0cbd1363647c/gkaf403figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验