College of Computer Science, Chongqing University, Chongqing 400044, China.
J Mol Graph Model. 2023 Nov;124:108557. doi: 10.1016/j.jmgm.2023.108557. Epub 2023 Jun 22.
The properties of drugs may undergo changes when multiple drugs are co-administered to treat co-existing or complex diseases, potentially leading to unforeseen drug-drug interactions (DDIs). Therefore, predicting potential drug-drug interactions has been an important task in pharmaceutical research. However, the following challenges remain: (1) existing methods do not work very well in cold-start scenarios, and (2) the interpretability of existing methods is not satisfactory. To address these challenges, we proposed a multi-channel feature fusion method based on local substructure features of drugs and their complements (LSFC). The local substructure features are extracted from each drug, interacted with those of another drug, and then integrated with the global features of two drugs for DDI prediction. We evaluated LSFC on two real-world DDI datasets in worm-start and cold-start scenarios. Comprehensive experiments demonstrate that LSFC consistently improved DDI prediction performance compared with the start-of-the-art methods. Moreover, visual inspection results showed that LSFC can detect crucial substructures of drugs for DDIs, providing interpretable DDI prediction. The source codes and data are available at https://github.com/Zhang-Yang-ops/LSFC.
当多种药物联合用于治疗共存或复杂疾病时,药物的性质可能会发生变化,从而可能导致不可预见的药物相互作用(DDI)。因此,预测潜在的药物相互作用一直是药物研究中的一项重要任务。然而,仍然存在以下挑战:(1)现有方法在冷启动情况下效果不佳,(2)现有方法的可解释性不尽如人意。为了解决这些挑战,我们提出了一种基于药物局部子结构特征及其互补物(LSFC)的多通道特征融合方法。从每种药物中提取局部子结构特征,与另一种药物的特征相互作用,然后与两种药物的全局特征集成,用于 DDI 预测。我们在 worm-start 和 cold-start 场景下的两个真实 DDI 数据集上评估了 LSFC。综合实验表明,LSFC 与最先进的方法相比,始终能提高 DDI 预测性能。此外,可视化检查结果表明,LSFC 可以检测到 DDI 中药物的关键子结构,提供可解释的 DDI 预测。源代码和数据可在 https://github.com/Zhang-Yang-ops/LSFC 上获得。