Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, Dalian University, Dalian, 116000, China.
School of Software Engineering, Dalian University, Dalian, 116000, China.
BMC Bioinformatics. 2024 Jan 23;25(1):39. doi: 10.1186/s12859-024-05654-4.
Drug-drug interactions (DDI) are prevalent in combination therapy, necessitating the importance of identifying and predicting potential DDI. While various artificial intelligence methods can predict and identify potential DDI, they often overlook the sequence information of drug molecules and fail to comprehensively consider the contribution of molecular substructures to DDI.
In this paper, we proposed a novel model for DDI prediction based on sequence and substructure features (SSF-DDI) to address these issues. Our model integrates drug sequence features and structural features from the drug molecule graph, providing enhanced information for DDI prediction and enabling a more comprehensive and accurate representation of drug molecules.
The results of experiments and case studies have demonstrated that SSF-DDI significantly outperforms state-of-the-art DDI prediction models across multiple real datasets and settings. SSF-DDI performs better in predicting DDI involving unknown drugs, resulting in a 5.67% improvement in accuracy compared to state-of-the-art methods.
药物-药物相互作用(DDI)在联合治疗中很常见,因此需要识别和预测潜在的 DDI。虽然各种人工智能方法可以预测和识别潜在的 DDI,但它们往往忽略了药物分子的序列信息,并且未能全面考虑分子亚结构对 DDI 的贡献。
在本文中,我们提出了一种基于序列和子结构特征(SSF-DDI)的新型 DDI 预测模型,以解决这些问题。我们的模型整合了药物序列特征和来自药物分子图的结构特征,为 DDI 预测提供了增强的信息,使药物分子的表示更加全面和准确。
实验和案例研究的结果表明,SSF-DDI 在多个真实数据集和设置上均显著优于最先进的 DDI 预测模型。SSF-DDI 在预测涉及未知药物的 DDI 方面表现更好,与最先进的方法相比,准确性提高了 5.67%。