Suppr超能文献

STNN-DDI:一种基于子结构感知的张量神经网络,用于预测药物-药物相互作用。

STNN-DDI: a Substructure-aware Tensor Neural Network to predict Drug-Drug Interactions.

机构信息

School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China.

School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac209.

Abstract

Computational prediction of multiple-type drug-drug interaction (DDI) helps reduce unexpected side effects in poly-drug treatments. Although existing computational approaches achieve inspiring results, they ignore to study which local structures of drugs cause DDIs, and their interpretability is still weak. In this paper, by supposing that the interactions between two given drugs are caused by their local chemical structures (substructures) and their DDI types are determined by the linkages between different substructure sets, we design a novel Substructure-aware Tensor Neural Network model for DDI prediction (STNN-DDI). The proposed model learns a 3-D tensor of $\langle $  substructure, substructure, interaction type  $\rangle $ triplets, which characterizes a substructure-substructure interaction (SSI) space. According to a list of predefined substructures with specific chemical meanings, the mapping of drugs into this SSI space enables STNN-DDI to perform the multiple-type DDI prediction in both transductive and inductive scenarios in a unified form with an explicable manner. The comparison with deep learning-based state-of-the-art baselines demonstrates the superiority of STNN-DDI with the significant improvement of AUC, AUPR, Accuracy and Precision. More importantly, case studies illustrate its interpretability by both revealing an important substructure pair across drugs regarding a DDI type of interest and uncovering interaction type-specific substructure pairs in a given DDI. In summary, STNN-DDI provides an effective approach to predicting DDIs as well as explaining the interaction mechanisms among drugs. Source code is freely available at https://github.com/zsy-9/STNN-DDI.

摘要

计算预测多种药物相互作用(DDI)有助于减少多药物治疗中的意外副作用。虽然现有的计算方法取得了令人鼓舞的结果,但它们忽略了研究哪些药物的局部结构导致 DDI,并且它们的可解释性仍然较弱。在本文中,我们假设两个给定药物之间的相互作用是由它们的局部化学结构(子结构)引起的,并且它们的 DDI 类型是由不同子结构集之间的连接决定的,我们设计了一种新的子结构感知张量神经网络模型用于 DDI 预测(STNN-DDI)。所提出的模型学习了一个 3-D 张量 $\langle $ 子结构,子结构,相互作用类型 $\rangle$ 三重体,其特征是子结构-子结构相互作用(SSI)空间。根据具有特定化学意义的预定义子结构列表,将药物映射到这个 SSI 空间中,使得 STNN-DDI 能够以可解释的方式统一地在传导和归纳场景中进行多种类型的 DDI 预测。与基于深度学习的最先进基线的比较表明,STNN-DDI 的优越性在于 AUC、AUPR、准确性和精度都有显著提高。更重要的是,案例研究通过揭示与 DDI 类型相关的药物之间的一个重要子结构对以及揭示给定 DDI 中的交互类型特定的子结构对,说明了其可解释性。总之,STNN-DDI 为预测 DDI 以及解释药物之间的相互作用机制提供了一种有效的方法。源代码可在 https://github.com/zsy-9/STNN-DDI 上免费获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验