Suppr超能文献

通过子结构感知图神经网络学习用于可解释药物-药物相互作用预测的大小自适应分子子结构

Learning size-adaptive molecular substructures for explainable drug-drug interaction prediction by substructure-aware graph neural network.

作者信息

Yang Ziduo, Zhong Weihe, Lv Qiujie, Yu-Chian Chen Calvin

机构信息

Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University Shenzhen 510275 China

Department of Medical Research, China Medical University Hospital Taichung 40447 Taiwan.

出版信息

Chem Sci. 2022 Jul 13;13(29):8693-8703. doi: 10.1039/d2sc02023h. eCollection 2022 Jul 29.

Abstract

Drug-drug interactions (DDIs) can trigger unexpected pharmacological effects on the body, and the causal mechanisms are often unknown. Graph neural networks (GNNs) have been developed to better understand DDIs. However, identifying key substructures that contribute most to the DDI prediction is a challenge for GNNs. In this study, we presented a substructure-aware graph neural network, a message passing neural network equipped with a novel substructure attention mechanism and a substructure-substructure interaction module (SSIM) for DDI prediction (SA-DDI). Specifically, the substructure attention was designed to capture size- and shape-adaptive substructures based on the chemical intuition that the sizes and shapes are often irregular for functional groups in molecules. DDIs are fundamentally caused by chemical substructure interactions. Thus, the SSIM was used to model the substructure-substructure interactions by highlighting important substructures while de-emphasizing the minor ones for DDI prediction. We evaluated our approach in two real-world datasets and compared the proposed method with the state-of-the-art DDI prediction models. The SA-DDI surpassed other approaches on the two datasets. Moreover, the visual interpretation results showed that the SA-DDI was sensitive to the structure information of drugs and was able to detect the key substructures for DDIs. These advantages demonstrated that the proposed method improved the generalization and interpretation capability of DDI prediction modeling.

摘要

药物相互作用(DDIs)可能会引发对人体意想不到的药理作用,而其因果机制往往不明。为了更好地理解药物相互作用,人们开发了图神经网络(GNNs)。然而,识别对药物相互作用预测贡献最大的关键子结构对图神经网络来说是一项挑战。在本研究中,我们提出了一种子结构感知图神经网络,这是一种配备了新型子结构注意力机制和子结构-子结构相互作用模块(SSIM)的消息传递神经网络,用于药物相互作用预测(SA-DDI)。具体而言,子结构注意力旨在基于化学直觉捕捉大小和形状自适应的子结构,即分子中官能团的大小和形状通常是不规则的。药物相互作用从根本上是由化学子结构相互作用引起的。因此,子结构-子结构相互作用模块用于通过突出重要子结构同时淡化次要子结构来对药物相互作用预测的子结构-子结构相互作用进行建模。我们在两个真实世界数据集上评估了我们的方法,并将所提出的方法与最先进的药物相互作用预测模型进行了比较。SA-DDI在这两个数据集上超过了其他方法。此外,可视化解释结果表明,SA-DDI对药物的结构信息敏感,并且能够检测出药物相互作用的关键子结构。这些优势表明,所提出的方法提高了药物相互作用预测建模的泛化能力和解释能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dd8/9337739/47b12287cdcd/d2sc02023h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验