Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China.
School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
BMC Bioinformatics. 2020 Sep 24;21(1):419. doi: 10.1186/s12859-020-03724-x.
The treatment of complex diseases by taking multiple drugs becomes increasingly popular. However, drug-drug interactions (DDIs) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. DDI detection in the wet lab is expensive and time-consuming. Thus, it is highly desired to develop the computational methods for predicting DDIs. Generally, most of the existing computational methods predict DDIs by extracting the chemical and biological features of drugs from diverse drug-related properties, however some drug properties are costly to obtain and not available in many cases.
In this work, we presented a novel method (namely DPDDI) to predict DDIs by extracting the network structure features of drugs from DDI network with graph convolution network (GCN), and the deep neural network (DNN) model as a predictor. GCN learns the low-dimensional feature representations of drugs by capturing the topological relationship of drugs in DDI network. DNN predictor concatenates the latent feature vectors of any two drugs as the feature vector of the corresponding drug pairs to train a DNN for predicting the potential drug-drug interactions. Experiment results show that, the newly proposed DPDDI method outperforms four other state-of-the-art methods; the GCN-derived latent features include more DDI information than other features derived from chemical, biological or anatomical properties of drugs; and the concatenation feature aggregation operator is better than two other feature aggregation operators (i.e., inner product and summation). The results in case studies confirm that DPDDI achieves reasonable performance in predicting new DDIs.
We proposed an effective and robust method DPDDI to predict the potential DDIs by utilizing the DDI network information without considering the drug properties (i.e., drug chemical and biological properties). The method should also be useful in other DDI-related scenarios, such as the detection of unexpected side effects, and the guidance of drug combination.
多药物联合治疗复杂疾病的方法越来越受欢迎。然而,药物-药物相互作用(DDI)可能会带来意料之外的不良反应甚至未知毒性的风险。在湿实验室中进行 DDI 检测既昂贵又耗时。因此,开发用于预测 DDI 的计算方法是非常有必要的。通常,大多数现有的计算方法通过从各种与药物相关的特性中提取药物的化学和生物学特征来预测 DDI,但是一些药物特性获取成本高,并且在许多情况下无法获得。
在这项工作中,我们提出了一种新的方法(即 DPDDI),通过使用图卷积网络(GCN)从 DDI 网络中提取药物的网络结构特征,并使用深度神经网络(DNN)模型作为预测器来预测 DDI。GCN 通过捕捉 DDI 网络中药物的拓扑关系来学习药物的低维特征表示。DNN 预测器将任意两个药物的潜在特征向量连接起来作为相应药物对的特征向量,以训练用于预测潜在药物-药物相互作用的 DNN。实验结果表明,新提出的 DPDDI 方法优于其他四种最先进的方法;GCN 衍生的潜在特征比其他源自药物化学、生物学或解剖学特性的特征包含更多的 DDI 信息;并且连接特征聚合运算符优于其他两个特征聚合运算符(即内积和求和)。案例研究的结果证实,DPDDI 在预测新的 DDI 方面具有合理的性能。
我们提出了一种有效的、稳健的方法 DPDDI,通过利用 DDI 网络信息而无需考虑药物特性(即药物化学和生物学特性)来预测潜在的 DDI。该方法在其他与 DDI 相关的场景中也应该有用,例如意外副作用的检测和药物组合的指导。