Aguirre-Liguori Jonás A, Morales-Cruz Abraham, Gaut Brandon S, Ramírez-Barahona Santiago
Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico.
Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Mexico.
Mol Ecol Resour. 2025 Jul;25(5):e13828. doi: 10.1111/1755-0998.13828. Epub 2023 Jun 30.
Genomic data and machine learning approaches have gained interest due to their potential to identify adaptive genetic variation across populations and to assess species vulnerability to climate change. By identifying gene-environment associations for putatively adaptive loci, these approaches project changes to adaptive genetic composition as a function of future climate change (genetic offsets), which are interpreted as measuring the future maladaptation of populations due to climate change. In principle, higher genetic offsets relate to increased population vulnerability and therefore can be used to set priorities for conservation and management. However, it is not clear how sensitive these metrics are to the intensity of population and individual sampling. Here, we use five genomic datasets with varying numbers of SNPs (N = 7006-1,398,773), sampled populations (N = 23-47) and individuals (N = 185-595) to evaluate the estimation sensitivity of genetic offsets to varying degrees of sampling intensity. We found that genetic offsets are sensitive to the number of populations being sampled, especially with less than 10 populations and when genetic structure is high. We also found that the number of individuals sampled per population had small effects on the estimation of genetic offsets, with more robust results when five or more individuals are sampled. Finally, uncertainty associated with the use of different future climate scenarios slightly increased estimation uncertainty in the genetic offsets. Our results suggest that sampling efforts should focus on increasing the number of populations, rather than the number of individuals per populations, and that multiple future climate scenarios should be evaluated to ascertain estimation sensitivity.
基因组数据和机器学习方法因其在识别不同种群间适应性遗传变异以及评估物种对气候变化的脆弱性方面的潜力而受到关注。通过识别假定适应性基因座的基因-环境关联,这些方法将适应性遗传组成的变化预测为未来气候变化的函数(遗传偏移),这被解释为衡量由于气候变化导致的种群未来不适应性。原则上,较高遗传偏移与种群脆弱性增加相关,因此可用于确定保护和管理的优先事项。然而,尚不清楚这些指标对种群和个体采样强度的敏感程度如何。在此,我们使用五个具有不同单核苷酸多态性数量(N = 7006 - 1,398,773)、采样种群数量(N = 23 - 47)和个体数量(N = 185 - 595)的基因组数据集,来评估遗传偏移对不同程度采样强度的估计敏感性。我们发现遗传偏移对采样种群数量敏感,尤其是种群数量少于10个且遗传结构较高时。我们还发现每个种群采样的个体数量对遗传偏移估计的影响较小,当每个种群采样5个或更多个体时结果更稳健。最后,与使用不同未来气候情景相关的不确定性略微增加了遗传偏移估计的不确定性。我们的结果表明,采样工作应侧重于增加种群数量而非每个种群的个体数量,并且应评估多种未来气候情景以确定估计敏感性。