Meng Wen, Chen Ting, Li Xueping, Li Yi, Zhang Lu, Xu Yigang, Song Tianqiang, Qi Ji, Xiong Qingqing, Li Wen
Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China.
Adv Sci (Weinh). 2025 Feb;12(8):e2413833. doi: 10.1002/advs.202413833. Epub 2025 Jan 9.
The development of efficient therapeutic strategies to promote ferroptotic cell death offers significant potential for hepatocellular carcinoma (HCC) treatment. Herein, this study presents an HCC-targeted nanoplatform that integrates bimetallic FeMoO nanoparticles with CO-releasing molecules, and further camouflaged with SP94 peptide-modified macrophage membrane for enhanced ferroptosis-driven multi-modal therapy of HCC. Leveraging the multi-enzyme activities of the multivalent metallic elements, the nanoplatform not only decomposes HO to generate oxygen and alleviate tumor hypoxia but also depletes glutathione to inactivate glutathione peroxides 4, which amplify sonodynamic therapy and ferroptotic tumor death under ultrasound (US) irradiation. Meanwhile, the nanoplatform catalyzes the Fenton reaction to produce hydroxyl radicals for chemodynamic therapy. Elevated intracellular reactive oxygen species trigger the cascade release of CO, leading to lethal lipid peroxidation and further enhancing ferroptosis-mediated tumor therapy. This nanoplatform demonstrates robust anti-tumor efficacy under US irradiation with favorable biosafety in both subcutaneous and orthotopic HCC models, representing a promising therapeutic approach for HCC. Additionally, the findings offer new insights into tumor microenvironment modulation to optimize US-triggered multi-modal cancer therapy.
开发促进铁死亡细胞死亡的有效治疗策略为肝细胞癌(HCC)的治疗提供了巨大潜力。在此,本研究提出了一种靶向肝癌的纳米平台,该平台将双金属FeMoO纳米颗粒与一氧化碳释放分子整合在一起,并用SP94肽修饰的巨噬细胞膜进行进一步伪装,以增强铁死亡驱动的肝癌多模态治疗。利用多价金属元素的多酶活性,该纳米平台不仅分解过氧化氢以产生氧气并缓解肿瘤缺氧,还消耗谷胱甘肽以使谷胱甘肽过氧化物酶4失活,从而在超声(US)照射下增强声动力疗法和铁死亡肿瘤死亡。同时,该纳米平台催化芬顿反应以产生活性氧用于化学动力疗法。细胞内活性氧的升高触发一氧化碳的级联释放,导致致命的脂质过氧化并进一步增强铁死亡介导的肿瘤治疗。该纳米平台在皮下和原位肝癌模型中,在超声照射下显示出强大的抗肿瘤功效,且具有良好的生物安全性,是一种有前途的肝癌治疗方法。此外,这些发现为调节肿瘤微环境以优化超声触发的多模态癌症治疗提供了新的见解。