Suppr超能文献

眼球运动变化作为轻度认知障碍的一个指标。

Eye movement changes as an indicator of mild cognitive impairment.

作者信息

Opwonya Julius, Ku Boncho, Lee Kun Ho, Kim Joong Il, Kim Jaeuk U

机构信息

Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.

KM Convergence Science, University of Science and Technology, Daejeon, South Korea.

出版信息

Front Neurosci. 2023 Jun 15;17:1171417. doi: 10.3389/fnins.2023.1171417. eCollection 2023.

Abstract

BACKGROUND

Early identification of patients at risk of dementia, alongside timely medical intervention, can prevent disease progression. Despite their potential clinical utility, the application of diagnostic tools, such as neuropsychological assessments and neuroimaging biomarkers, is hindered by their high cost and time-consuming administration, rendering them impractical for widespread implementation in the general population. We aimed to develop non-invasive and cost-effective classification models for predicting mild cognitive impairment (MCI) using eye movement (EM) data.

METHODS

We collected eye-tracking (ET) data from 594 subjects, 428 cognitively normal controls, and 166 patients with MCI while they performed prosaccade/antisaccade and go/no-go tasks. Logistic regression (LR) was used to calculate the EM metrics' odds ratios (ORs). We then used machine learning models to construct classification models using EM metrics, demographic characteristics, and brief cognitive screening test scores. Model performance was evaluated based on the area under the receiver operating characteristic curve (AUROC).

RESULTS

LR models revealed that several EM metrics are significantly associated with increased odds of MCI, with odds ratios ranging from 1.213 to 1.621. The AUROC scores for models utilizing demographic information and either EM metrics or MMSE were 0.752 and 0.767, respectively. Combining all features, including demographic, MMSE, and EM, notably resulted in the best-performing model, which achieved an AUROC of 0.840.

CONCLUSION

Changes in EM metrics linked with MCI are associated with attentional and executive function deficits. EM metrics combined with demographics and cognitive test scores enhance MCI prediction, making it a non-invasive, cost-effective method to identify early stages of cognitive decline.

摘要

背景

早期识别有痴呆风险的患者,并及时进行医学干预,可预防疾病进展。尽管诊断工具如神经心理学评估和神经影像生物标志物具有潜在的临床应用价值,但其高成本和耗时的应用过程阻碍了它们的推广,使其在普通人群中广泛应用不切实际。我们旨在开发使用眼动(EM)数据预测轻度认知障碍(MCI)的非侵入性且具有成本效益的分类模型。

方法

我们收集了594名受试者的眼动追踪(ET)数据,其中包括428名认知正常对照者和166名MCI患者,他们在进行前扫视/反扫视和执行/不执行任务时的数据。使用逻辑回归(LR)计算眼动指标的优势比(OR)。然后,我们使用机器学习模型,利用眼动指标、人口统计学特征和简短认知筛查测试分数构建分类模型。基于受试者工作特征曲线下面积(AUROC)评估模型性能。

结果

LR模型显示,几个眼动指标与MCI几率增加显著相关,优势比范围为1.213至1.621。利用人口统计学信息和眼动指标或简易精神状态检查表(MMSE)的模型的AUROC分数分别为0.752和0.767。结合所有特征,包括人口统计学、MMSE和眼动指标,显著产生了性能最佳的模型,其AUROC为0.840。

结论

与MCI相关的眼动指标变化与注意力和执行功能缺陷有关。眼动指标与人口统计学和认知测试分数相结合可增强MCI预测,使其成为识别认知衰退早期阶段的非侵入性、具有成本效益的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6c9/10307957/8e6110a66915/fnins-17-1171417-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验