Suppr超能文献

优化用于可及性早期认知障碍预测的机器学习模型:一种新型经济高效的模型选择算法

Optimizing Machine Learning Models for Accessible Early Cognitive Impairment Prediction: A Novel Cost-effective Model Selection Algorithm.

作者信息

Shubar Abduelhakem G, Ramakrishnan Kannan, Ho Chin-Kuan

机构信息

Faculty of Computing & Informatics, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia.

Asia Pacific University of Technology and Innovation, Jalan Teknologi 5, Technology Park Malaysia, 57000, Kuala Lumpur, Malaysia.

出版信息

IEEE Access. 2024;12:180792-180814. doi: 10.1109/access.2024.3505038. Epub 2024 Nov 22.

Abstract

Cognitive impairment and dementia-related diseases develop several years before moderate or severe deterioration in cognitive function occurs. Nevertheless, most dementia cases, especially in low- and middle-income countries, remain undiagnosed because of limited access to affordable diagnostic tools. Additionally, the development of accessible tools for diagnosing and predicting cognitive impairment has not been extensively discussed in the literature. The objective of this study is to develop a cost-effective and highly accessible machine learning model to predict the risk of cognitive impairment for up to five years before clinical insight. We utilized easily accessible data from the National Alzheimer's Coordinating Center (NACC) Uniform Data Set (UDS) to train and evaluate various machine learning and deep learning models. A novel algorithm was developed to facilitate the selection of cost-effective models that offer high performance while minimizing development and operational costs. We conducted various assessments, including feature selection, time-series analyses, and external validation of the selected model. Our findings indicated that the Support Vector Machine (SVM) model was preferred over other high-performing neural network models because of its computational efficiency, achieving F2-scores of 0.828 in cross-validation and 0.750 in a generalizability test. Additionally, we found that demographic and historical health data are valuable for early prediction of cognitive impairment. This study demonstrates the potential of developing accessible solutions to predict cognitive impairment early using accurate and efficient machine learning models. Future interventions should consider creating cost-effective assessment tools to support global action plans and reduce the risk of cognitive impairment.

摘要

认知障碍和与痴呆相关的疾病在认知功能出现中度或重度衰退的数年前就已发展。然而,大多数痴呆病例,尤其是在低收入和中等收入国家,由于难以获得负担得起的诊断工具,仍然未被诊断出来。此外,文献中尚未广泛讨论开发用于诊断和预测认知障碍的便捷工具。本研究的目的是开发一种具有成本效益且易于使用的机器学习模型,以在临床洞察前长达五年的时间内预测认知障碍的风险。我们利用来自国家阿尔茨海默病协调中心(NACC)统一数据集(UDS)的易于获取的数据来训练和评估各种机器学习和深度学习模型。开发了一种新颖的算法,以促进选择具有成本效益的模型,这些模型在提供高性能的同时将开发和运营成本降至最低。我们进行了各种评估,包括特征选择、时间序列分析以及对所选模型的外部验证。我们的研究结果表明,支持向量机(SVM)模型优于其他高性能神经网络模型,因为其计算效率高,在交叉验证中F2分数为0.828,在泛化测试中为0.750。此外,我们发现人口统计学和历史健康数据对于认知障碍的早期预测很有价值。这项研究证明了使用准确且高效的机器学习模型开发易于使用的解决方案以早期预测认知障碍的潜力。未来的干预措施应考虑创建具有成本效益的评估工具,以支持全球行动计划并降低认知障碍的风险。

相似文献

2
Machine learning for the prediction of cognitive impairment in older adults.
Front Neurosci. 2023 Apr 27;17:1158141. doi: 10.3389/fnins.2023.1158141. eCollection 2023.
4
Develop a diagnostic tool for dementia using machine learning and non-imaging features.
Front Aging Neurosci. 2022 Aug 29;14:945274. doi: 10.3389/fnagi.2022.945274. eCollection 2022.
5
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
8
A machine learning approach for identifying anatomical biomarkers of early mild cognitive impairment.
PeerJ. 2024 Dec 13;12:e18490. doi: 10.7717/peerj.18490. eCollection 2024.

本文引用的文献

1
Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission.
Lancet. 2024 Aug 10;404(10452):572-628. doi: 10.1016/S0140-6736(24)01296-0. Epub 2024 Jul 31.
2
Prediction of Alzheimer's disease progression within 6 years using speech: A novel approach leveraging language models.
Alzheimers Dement. 2024 Aug;20(8):5262-5270. doi: 10.1002/alz.13886. Epub 2024 Jun 25.
3
Mild cognitive impairment detection from facial video interviews by applying spatial-to-temporal attention module.
Expert Syst Appl. 2024 Oct 15;252(Pt B). doi: 10.1016/j.eswa.2024.124185. Epub 2024 May 10.
5
Machine Learning for the Preliminary Diagnosis of Dementia.
Sci Program. 2020;2020:5629090. doi: 10.1155/2020/5629090. Epub 2020 Mar 7.
6
An explainable machine learning approach for Alzheimer's disease classification.
Sci Rep. 2024 Feb 1;14(1):2637. doi: 10.1038/s41598-024-51985-w.
7
Improving clinical efficiency in screening for cognitive impairment due to Alzheimer's.
Alzheimers Dement (Amst). 2023 Oct 29;15(4):e12494. doi: 10.1002/dad2.12494. eCollection 2023 Oct-Dec.
8
Eye movement changes as an indicator of mild cognitive impairment.
Front Neurosci. 2023 Jun 15;17:1171417. doi: 10.3389/fnins.2023.1171417. eCollection 2023.
10
Conventional machine learning and deep learning in Alzheimer's disease diagnosis using neuroimaging: A review.
Front Comput Neurosci. 2023 Feb 6;17:1038636. doi: 10.3389/fncom.2023.1038636. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验