Liu Shichao, Zhang Yang, Cui Yuxin, Qiu Yang, Deng Yifan, Zhang Zhongfei, Zhang Wen
IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):976-985. doi: 10.1109/TCBB.2022.3172421. Epub 2023 Apr 3.
Drug-drug interactions are one of the main concerns in drug discovery. Accurate prediction of drug-drug interactions plays a key role in increasing the efficiency of drug research and safety when multiple drugs are co-prescribed. With various data sources that describe the relationships and properties between drugs, the comprehensive approach that integrates multiple data sources would be considerably effective in making high-accuracy prediction. In this paper, we propose a Deep Attention Neural Network based Drug-Drug Interaction prediction framework, abbreviated as DANN-DDI, to predict unobserved drug-drug interactions. First, we construct multiple drug feature networks and learn drug representations from these networks using the graph embedding method; then, we concatenate the learned drug embeddings and design an attention neural network to learn representations of drug-drug pairs; finally, we adopt a deep neural network to accurately predict drug-drug interactions. The experimental results demonstrate that our model DANN-DDI has improved prediction performance compared with state-of-the-art methods. Moreover, the proposed model can predict novel drug-drug interactions and drug-drug interaction-associated events.
药物相互作用是药物研发中的主要关注点之一。在多种药物联合处方时,准确预测药物相互作用对于提高药物研究效率和安全性起着关键作用。借助各种描述药物之间关系和特性的数据源,整合多个数据源的综合方法在进行高精度预测方面将非常有效。在本文中,我们提出了一种基于深度注意力神经网络的药物相互作用预测框架,简称为DANN-DDI,用于预测未观察到的药物相互作用。首先,我们构建多个药物特征网络,并使用图嵌入方法从这些网络中学习药物表示;然后,我们将学习到的药物嵌入连接起来,并设计一个注意力神经网络来学习药物对的表示;最后,我们采用深度神经网络来准确预测药物相互作用。实验结果表明,我们的模型DANN-DDI与现有方法相比具有更高的预测性能。此外,所提出的模型可以预测新的药物相互作用以及与药物相互作用相关的事件。