Suppr超能文献

基于生物医学知识图谱的方法,通过结合局部和全局特征与深度神经网络来预测药物-药物相互作用。

A biomedical knowledge graph-based method for drug-drug interactions prediction through combining local and global features with deep neural networks.

机构信息

School of Information Engineering, Xijing University, Xi'an 710100, China.

School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China.

出版信息

Brief Bioinform. 2022 Sep 20;23(5). doi: 10.1093/bib/bbac363.

Abstract

Drug-drug interactions (DDIs) prediction is a challenging task in drug development and clinical application. Due to the extremely large complete set of all possible DDIs, computer-aided DDIs prediction methods are getting lots of attention in the pharmaceutical industry and academia. However, most existing computational methods only use single perspective information and few of them conduct the task based on the biomedical knowledge graph (BKG), which can provide more detailed and comprehensive drug lateral side information flow. To this end, a deep learning framework, namely DeepLGF, is proposed to fully exploit BKG fusing local-global information to improve the performance of DDIs prediction. More specifically, DeepLGF first obtains chemical local information on drug sequence semantics through a natural language processing algorithm. Then a model of BFGNN based on graph neural network is proposed to extract biological local information on drug through learning embedding vector from different biological functional spaces. The global feature information is extracted from the BKG by our knowledge graph embedding method. In DeepLGF, for fusing local-global features well, we designed four aggregating methods to explore the most suitable ones. Finally, the advanced fusing feature vectors are fed into deep neural network to train and predict. To evaluate the prediction performance of DeepLGF, we tested our method in three prediction tasks and compared it with state-of-the-art models. In addition, case studies of three cancer-related and COVID-19-related drugs further demonstrated DeepLGF's superior ability for potential DDIs prediction. The webserver of the DeepLGF predictor is freely available at http://120.77.11.78/DeepLGF/.

摘要

药物-药物相互作用(DDIs)预测是药物开发和临床应用中的一项具有挑战性的任务。由于完整的药物相互作用全集非常庞大,因此计算机辅助的 DDIs 预测方法在制药行业和学术界受到了广泛关注。然而,大多数现有的计算方法仅使用单一视角的信息,很少有基于生物医学知识图谱(BKG)进行任务的方法,BKG 可以提供更详细和全面的药物侧面信息流。为此,提出了一种深度学习框架,即 DeepLGF,以充分利用 BKG 融合局部-全局信息来提高 DDIs 预测的性能。更具体地说,DeepLGF 首先通过自然语言处理算法获取药物序列语义上的化学局部信息。然后,提出了一种基于图神经网络的 BFGNN 模型,通过从不同的生物功能空间学习嵌入向量来提取药物的生物局部信息。通过我们的知识图谱嵌入方法,从 BKG 中提取全局特征信息。在 DeepLGF 中,为了很好地融合局部-全局特征,我们设计了四种聚合方法来探索最合适的方法。最后,将高级融合特征向量输入到深度神经网络中进行训练和预测。为了评估 DeepLGF 的预测性能,我们在三个预测任务中测试了我们的方法,并与最先进的模型进行了比较。此外,对三种癌症相关和 COVID-19 相关药物的案例研究进一步证明了 DeepLGF 具有潜在 DDIs 预测的优越能力。DeepLGF 预测器的 Web 服务器可在 http://120.77.11.78/DeepLGF/ 免费获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验