School of Information Engineering, Xijing University, Xi'an, China.
School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
BMC Bioinformatics. 2024 Aug 10;25(1):264. doi: 10.1186/s12859-024-05891-7.
Circular RNA (CircRNA)-microRNA (miRNA) interaction (CMI) is an important model for the regulation of biological processes by non-coding RNA (ncRNA), which provides a new perspective for the study of human complex diseases. However, the existing CMI prediction models mainly rely on the nearest neighbor structure in the biological network, ignoring the molecular network topology, so it is difficult to improve the prediction performance. In this paper, we proposed a new CMI prediction method, BEROLECMI, which uses molecular sequence attributes, molecular self-similarity, and biological network topology to define the specific role feature representation for molecules to infer the new CMI. BEROLECMI effectively makes up for the lack of network topology in the CMI prediction model and achieves the highest prediction performance in three commonly used data sets. In the case study, 14 of the 15 pairs of unknown CMIs were correctly predicted.
环状 RNA(CircRNA)-microRNA(miRNA)相互作用(CMI)是通过非编码 RNA(ncRNA)调控生物过程的重要模型,为人类复杂疾病的研究提供了新视角。然而,现有的 CMI 预测模型主要依赖于生物网络中的最近邻结构,忽略了分子网络拓扑,因此难以提高预测性能。在本文中,我们提出了一种新的 CMI 预测方法 BEROLECMI,它使用分子序列属性、分子自相似性和生物网络拓扑来定义分子的特定角色特征表示,以推断新的 CMI。BEROLECMI 有效地弥补了 CMI 预测模型中网络拓扑的不足,在三个常用数据集上实现了最高的预测性能。在案例研究中,15 对未知 CMIs 中有 14 对被正确预测。