Université Paris Cité, INSERM, UMR1137, IAME, Paris, France.
AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France.
Nat Microbiol. 2024 Nov;9(11):2847-2861. doi: 10.1038/s41564-024-01832-5. Epub 2024 Oct 31.
Predicting bacteriophage infection of specific bacterial strains promises advancements in phage therapy and microbial ecology. Whether the dynamics of well-established phage-host model systems generalize to the wide diversity of microbes is currently unknown. Here we show that we could accurately predict the outcomes of phage-bacteria interactions at the strain level in natural isolates from the genus Escherichia using only genomic data (area under the receiver operating characteristic curve (AUROC) of 86%). We experimentally established a dataset of interactions between 403 diverse Escherichia strains and 96 phages. Most interactions are explained by adsorption factors as opposed to antiphage systems which play a marginal role. We trained predictive algorithms and pinpoint poorly predicted interactions to direct future research efforts. Finally, we established a pipeline to recommend tailored phage cocktails, demonstrating efficiency on 100 pathogenic E. coli isolates. This work provides quantitative insights into phage-host specificity and supports the use of predictive algorithms in phage therapy.
预测噬菌体对特定细菌菌株的感染有望推动噬菌体治疗和微生物生态学的发展。目前尚不清楚成熟的噬菌体-宿主模型系统的动态是否适用于广泛的微生物多样性。在这里,我们仅使用基因组数据(接收者操作特征曲线下的面积(AUROC)为 86%)就表明,我们可以准确预测来自大肠埃希氏菌属的天然分离株中噬菌体-细菌相互作用的结果。我们通过实验建立了一个数据集,其中包含 403 种不同的大肠埃希氏菌菌株和 96 种噬菌体之间的相互作用。大多数相互作用可以通过吸附因子来解释,而抗噬菌体系统则起次要作用。我们训练了预测算法,并确定了预测效果不佳的相互作用,以便指导未来的研究工作。最后,我们建立了一个推荐定制噬菌体鸡尾酒的流水线,在 100 株致病性大肠杆菌分离株上证明了其效率。这项工作为噬菌体-宿主特异性提供了定量见解,并支持在噬菌体治疗中使用预测算法。