Suppr超能文献

用于轨迹推断的流形插值最优传输流

Manifold Interpolating Optimal-Transport Flows for Trajectory Inference.

作者信息

Huguet Guillaume, Magruder D S, Tong Alexander, Fasina Oluwadamilola, Kuchroo Manik, Wolf Guy, Krishnaswamy Smita

机构信息

Université de Montréal; Mila - Quebec AI Institute.

Yale University.

出版信息

Adv Neural Inf Process Syst. 2022 Dec;35:29705-29718.

Abstract

We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow) that learns stochastic, continuous population dynamics from static snapshot samples taken at sporadic timepoints. MIOFlow combines dynamic models, manifold learning, and optimal transport by training neural ordinary differential equations (Neural ODE) to interpolate between static population snapshots as penalized by optimal transport with manifold ground distance. Further, we ensure that the flow follows the geometry by operating in the latent space of an autoencoder that we call a geodesic autoencoder (GAE). In GAE the latent space distance between points is regularized to match a novel multiscale geodesic distance on the data manifold that we define. We show that this method is superior to normalizing flows, Schrödinger bridges and other generative models that are designed to flow from noise to data in terms of interpolating between populations. Theoretically, we link these trajectories with dynamic optimal transport. We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.

摘要

我们提出了一种名为流形插值最优传输流(MIOFlow)的方法,该方法可从在零星时间点采集的静态快照样本中学习随机、连续的群体动态。MIOFlow通过训练神经常微分方程(Neural ODE)来结合动态模型、流形学习和最优传输,以便在静态群体快照之间进行插值,这种插值受到带有流形地面距离的最优传输的惩罚。此外,我们通过在一个我们称为测地线自动编码器(GAE)的自动编码器的潜在空间中进行操作,确保流遵循几何形状。在GAE中,点之间的潜在空间距离被正则化,以匹配我们定义的数据流形上的一种新型多尺度测地线距离。我们表明,在群体之间进行插值方面,该方法优于归一化流、薛定谔桥以及其他旨在从噪声流向数据的生成模型。从理论上讲,我们将这些轨迹与动态最优传输联系起来。我们在具有分支和合并的模拟数据以及来自胚状体分化和急性髓细胞白血病治疗的单细胞RNA测序(scRNA-seq)数据上评估了我们的方法。

相似文献

1
Manifold Interpolating Optimal-Transport Flows for Trajectory Inference.
Adv Neural Inf Process Syst. 2022 Dec;35:29705-29718.
3
Graph Regularized Autoencoder and its Application in Unsupervised Anomaly Detection.
IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4110-4124. doi: 10.1109/TPAMI.2021.3066111. Epub 2022 Jul 1.
4
A regularized approach for geodesic-based semisupervised multimanifold learning.
IEEE Trans Image Process. 2014 May;23(5):2133-47. doi: 10.1109/TIP.2014.2312643.
6
Reconstructing growth and dynamic trajectories from single-cell transcriptomics data.
Nat Mach Intell. 2024;6(1):25-39. doi: 10.1038/s42256-023-00763-w. Epub 2023 Nov 30.
7
Hopfield Neural Network Flow: A Geometric Viewpoint.
IEEE Trans Neural Netw Learn Syst. 2020 Nov;31(11):4869-4880. doi: 10.1109/TNNLS.2019.2958556. Epub 2020 Oct 29.
10
Inferring single-cell transcriptomic dynamics with structured latent gene expression dynamics.
Cell Rep Methods. 2023 Sep 25;3(9):100581. doi: 10.1016/j.crmeth.2023.100581. Epub 2023 Sep 13.

引用本文的文献

1
Quantifying Landscape and Flux from Single-Cell Omics: Unraveling the Physical Mechanisms of Cell Function.
JACS Au. 2025 Aug 7;5(8):3738-3757. doi: 10.1021/jacsau.5c00620. eCollection 2025 Aug 25.
2
Identification of models describing gene expression data leveraging machine learning methods.
Interface Focus. 2025 Aug 22;15(3):20250014. doi: 10.1098/rsfs.2025.0014.
6
Integrating Dynamical Systems Modeling with Spatiotemporal scRNA-Seq Data Analysis.
Entropy (Basel). 2025 Apr 22;27(5):453. doi: 10.3390/e27050453.
7
Optimal transport reveals dynamic gene regulatory networks via gene velocity estimation.
PLoS Comput Biol. 2025 May 8;21(5):e1012476. doi: 10.1371/journal.pcbi.1012476. eCollection 2025 May.
8
Discovering governing equations of biological systems through representation learning and sparse model discovery.
NAR Genom Bioinform. 2025 Apr 26;7(2):lqaf048. doi: 10.1093/nargab/lqaf048. eCollection 2025 Jun.
9
Optimal transport reveals dynamic gene regulatory networks via gene velocity estimation.
bioRxiv. 2024 Sep 16:2024.09.12.612590. doi: 10.1101/2024.09.12.612590.

本文引用的文献

1
EMBEDDING SIGNALS ON GRAPHS WITH UNBALANCED DIFFUSION EARTH MOVER'S DISTANCE.
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:5647-5651. doi: 10.1109/icassp43922.2022.9746556. Epub 2022 Apr 27.
2
Inference of high-resolution trajectories in single-cell RNA-seq data by using RNA velocity.
Cell Rep Methods. 2021 Oct 25;1(6):100095. doi: 10.1016/j.crmeth.2021.100095.
3
Non-genetic determinants of malignant clonal fitness at single-cell resolution.
Nature. 2022 Jan;601(7891):125-131. doi: 10.1038/s41586-021-04206-7. Epub 2021 Dec 8.
4
Optimal transport analysis reveals trajectories in steady-state systems.
PLoS Comput Biol. 2021 Dec 3;17(12):e1009466. doi: 10.1371/journal.pcbi.1009466. eCollection 2021 Dec.
5
Solving Schrödinger Bridges via Maximum Likelihood.
Entropy (Basel). 2021 Aug 31;23(9):1134. doi: 10.3390/e23091134.
6
RNA velocity-current challenges and future perspectives.
Mol Syst Biol. 2021 Aug;17(8):e10282. doi: 10.15252/msb.202110282.
8
Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells.
Nat Commun. 2021 Jun 24;12(1):3942. doi: 10.1038/s41467-021-24152-2.
9
Visualizing structure and transitions in high-dimensional biological data.
Nat Biotechnol. 2019 Dec;37(12):1482-1492. doi: 10.1038/s41587-019-0336-3. Epub 2019 Dec 3.
10
ONECUT transcription factors induce neuronal characteristics and remodel chromatin accessibility.
Nucleic Acids Res. 2019 Jun 20;47(11):5587-5602. doi: 10.1093/nar/gkz273.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验