Zhao Wenjun, Larschan Erica, Sandstede Björn, Singh Ritambhara
Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America.
Department of Mathematics, University of British Columbia, Vancouver, Canada.
PLoS Comput Biol. 2025 May 8;21(5):e1012476. doi: 10.1371/journal.pcbi.1012476. eCollection 2025 May.
Inferring gene regulatory networks from gene expression data is an important and challenging problem in the biology community. We propose OTVelo, a methodology that takes time-stamped single-cell gene expression data as input and predicts gene regulation across two time points. It is known that the rate of change of gene expression, which we will refer to as gene velocity, provides crucial information that enhances such inference; however, this information is not always available due to the limitations in sequencing depth. Our algorithm overcomes this limitation by estimating gene velocities using optimal transport. We then infer gene regulation using time-lagged correlation and Granger causality via regularized linear regression. Instead of providing an aggregated network across all time points, our method uncovers the underlying dynamical mechanism across time points. We validate our algorithm on 13 simulated datasets with both synthetic and curated networks and demonstrate its efficacy on 9 experimental data sets.
从基因表达数据推断基因调控网络是生物学界一个重要且具有挑战性的问题。我们提出了OTVelo,这是一种以带时间戳的单细胞基因表达数据为输入,并预测两个时间点之间基因调控的方法。已知基因表达的变化率(我们将其称为基因速度)提供了增强此类推断的关键信息;然而,由于测序深度的限制,此信息并非总是可用。我们的算法通过使用最优传输估计基因速度来克服这一限制。然后,我们通过正则化线性回归,利用时间滞后相关性和格兰杰因果关系推断基因调控。我们的方法不是提供跨所有时间点的聚合网络,而是揭示跨时间点的潜在动力学机制。我们在13个具有合成网络和精选网络的模拟数据集上验证了我们的算法,并在9个实验数据集上证明了其有效性。