Suppr超能文献

时间映射器:模拟和真实神经动力学中的转换网络。

Temporal Mapper: Transition networks in simulated and real neural dynamics.

作者信息

Zhang Mengsen, Chowdhury Samir, Saggar Manish

机构信息

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.

Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA.

出版信息

Netw Neurosci. 2023 Jun 30;7(2):431-460. doi: 10.1162/netn_a_00301. eCollection 2023.

Abstract

Characterizing large-scale dynamic organization of the brain relies on both data-driven and mechanistic modeling, which demands a low versus high level of prior knowledge and assumptions about how constituents of the brain interact. However, the conceptual translation between the two is not straightforward. The present work aims to provide a bridge between data-driven and mechanistic modeling. We conceptualize brain dynamics as a complex landscape that is continuously modulated by internal and external changes. The modulation can induce transitions between one stable brain state (attractor) to another. Here, we provide a novel method-Temporal Mapper-built upon established tools from the field of topological data analysis to retrieve the network of attractor transitions from time series data alone. For theoretical validation, we use a biophysical network model to induce transitions in a controlled manner, which provides simulated time series equipped with a ground-truth attractor transition network. Our approach reconstructs the ground-truth transition network from simulated time series data better than existing time-varying approaches. For empirical relevance, we apply our approach to fMRI data gathered during a continuous multitask experiment. We found that occupancy of the high-degree nodes and cycles of the transition network was significantly associated with subjects' behavioral performance. Taken together, we provide an important first step toward integrating data-driven and mechanistic modeling of brain dynamics.

摘要

表征大脑的大规模动态组织依赖于数据驱动和机制建模,这需要对大脑组成部分如何相互作用有不同程度的先验知识和假设。然而,两者之间的概念转换并非易事。目前的工作旨在搭建数据驱动和机制建模之间的桥梁。我们将大脑动态概念化为一个复杂的景观,它会受到内部和外部变化的持续调节。这种调节可以诱导大脑从一种稳定状态(吸引子)转变为另一种状态。在这里,我们提供了一种新颖的方法——时间映射器,它基于拓扑数据分析领域的现有工具构建,仅从时间序列数据中检索吸引子转换网络。为了进行理论验证,我们使用一个生物物理网络模型以可控方式诱导转换,从而提供配备有真实吸引子转换网络的模拟时间序列。我们的方法从模拟时间序列数据中重建真实转换网络的效果优于现有的时变方法。为了验证其实际意义,我们将我们的方法应用于在连续多任务实验中收集的功能磁共振成像数据。我们发现转换网络的高度节点占有率和循环与受试者的行为表现显著相关。总之,我们朝着整合大脑动态的数据驱动和机制建模迈出了重要的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4532/10312258/eb1285def27b/netn-7-2-431-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验