Suppr超能文献

利用拓扑数据分析进行精确动力学映射揭示了在静息状态下类似于枢纽的过渡态。

Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest.

机构信息

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.

Brain and Mind Center, The University of Sydney, Sydney, NSW, Australia.

出版信息

Nat Commun. 2022 Aug 15;13(1):4791. doi: 10.1038/s41467-022-32381-2.

Abstract

In the absence of external stimuli, neural activity continuously evolves from one configuration to another. Whether these transitions or explorations follow some underlying arrangement or lack a predictable ordered plan remains to be determined. Here, using fMRI data from highly sampled individuals (~5 hours of resting-state data per individual), we aimed to reveal the rules that govern transitions in brain activity at rest. Our Topological Data Analysis based Mapper approach characterized a highly visited transition state of the brain that acts as a switch between different neural configurations to organize the spontaneous brain activity. Further, while the transition state was characterized by a uniform representation of canonical resting-state networks (RSNs), the periphery of the landscape was dominated by a subject-specific combination of RSNs. Altogether, we revealed rules or principles that organize spontaneous brain activity using a precision dynamics approach.

摘要

在没有外部刺激的情况下,神经活动会不断地从一种状态转变到另一种状态。这些转变或探索是否遵循某种潜在的安排,或者缺乏可预测的有序计划,还有待确定。在这里,我们使用来自高度采样个体(每个个体约 5 小时的静息态数据)的 fMRI 数据,旨在揭示支配静息状态下大脑活动转变的规律。我们基于拓扑数据分析的映射器方法,对大脑中一个高度活跃的转换状态进行了特征描述,这个状态充当了不同神经状态之间的开关,从而对自发性大脑活动进行了组织。进一步地,尽管转换状态的特征是典型静息态网络(RSN)的统一表示,但景观的外围则由 RSN 的特定于个体的组合所主导。总之,我们使用精确动力学方法揭示了组织自发性大脑活动的规则或原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e4/9378660/a1a2bc731f45/41467_2022_32381_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验