Haşegan Daniel, Geniesse Caleb, Chowdhury Samir, Saggar Manish
Department of Psychiatry and Behavioral Sciences, Stanford University.
Netw Neurosci. 2024 Dec 10;8(4):1355-1382. doi: 10.1162/netn_a_00403. eCollection 2024.
Capturing and tracking large-scale brain activity dynamics holds the potential to deepen our understanding of cognition. Previously, tools from topological data analysis, especially Mapper, have been successfully used to mine brain activity dynamics at the highest spatiotemporal resolutions. Even though it is a relatively established tool within the field of topological data analysis, Mapper results are highly impacted by parameter selection. Given that noninvasive human neuroimaging data (e.g., from fMRI) is typically fraught with artifacts and no gold standards exist regarding "true" state transitions, we argue for a thorough examination of Mapper parameter choices to better reveal their impact. Using synthetic data (with known transition structure) and real fMRI data, we explore a variety of parameter choices for each Mapper step, thereby providing guidance and heuristics for the field. We also release our parameter exploration toolbox as a software package to make it easier for scientists to investigate and apply Mapper to any dataset.
捕捉和追踪大规模脑活动动态变化,有望加深我们对认知的理解。此前,拓扑数据分析工具,尤其是Mapper,已成功用于挖掘最高时空分辨率下的脑活动动态变化。尽管Mapper在拓扑数据分析领域是一个相对成熟的工具,但其结果受参数选择的影响很大。鉴于非侵入性人类神经成像数据(如功能磁共振成像数据)通常充满伪迹,且不存在关于“真实”状态转换的金标准,我们主张对Mapper参数选择进行全面检查,以更好地揭示其影响。我们使用合成数据(具有已知转换结构)和真实功能磁共振成像数据,探索Mapper每个步骤的各种参数选择,从而为该领域提供指导和启发。我们还将参数探索工具箱作为软件包发布,以便科学家更轻松地研究Mapper并将其应用于任何数据集。