Stürner Tomke, Brooks Paul, Serratosa Capdevila Laia, Morris Billy J, Javier Alexandre, Fang Siqi, Gkantia Marina, Cachero Sebastian, Beckett Isabella R, Marin Elizabeth C, Schlegel Philipp, Champion Andrew S, Moitra Ilina, Richards Alana, Klemm Finja, Kugel Leonie, Namiki Shigehiro, Cheong Han S J, Kovalyak Julie, Tenshaw Emily, Parekh Ruchi, Phelps Jasper S, Mark Brandon, Dorkenwald Sven, Bates Alexander S, Matsliah Arie, Yu Szi-Chieh, McKellar Claire E, Sterling Amy, Seung H Sebastian, Murthy Mala, Tuthill John C, Lee Wei-Chung Allen, Card Gwyneth M, Costa Marta, Jefferis Gregory S X E, Eichler Katharina
Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
Nature. 2025 Apr 30. doi: 10.1038/s41586-025-08925-z.
In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and an information bottleneck connecting the brain and the ventral nerve cord (an analogue of the spinal cord) and comprises diverse populations of descending neurons (DNs), ascending neurons (ANs) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Here, by integrating three separate electron microscopy (EM) datasets, we provide a complete connectomic description of the ANs and DNs of the Drosophila female nervous system and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions are matched across hemispheres, datasets and sexes. Crucially, we also match 51% of DN cell types to light-level data defining specific driver lines, as well as classifying all ascending populations. We use these results to reveal the anatomical and circuit logic of neck connective neurons. We observe connected chains of DNs and ANs spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analyses of selected circuits for reproductive behaviours, including male courtship (DNa12; also known as aSP22) and song production (AN neurons from hemilineage 08B) and female ovipositor extrusion (DNp13). Our work provides EM-level circuit analyses that span the entire central nervous system of an adult animal.
在大多数复杂的神经系统中,包含行为所需大部分最终运动输出的神经索与大脑之间存在明显的解剖学分隔。在昆虫中,颈部神经连索既是连接大脑和腹神经索(类似于脊髓)的物理瓶颈,也是信息瓶颈,它由不同类型的下行神经元(DNs)、上行神经元(ANs)和感觉上行神经元组成,这些神经元对于感觉运动信号传导和控制至关重要。在这里,通过整合三个独立的电子显微镜(EM)数据集,我们提供了果蝇雌性神经系统中ANs和DNs的完整连接组描述,并将它们与雄性神经索中的神经元进行比较。经过校对的神经元重建在半球、数据集和性别之间进行匹配。至关重要的是,我们还将51%的DN细胞类型与定义特定驱动系的光水平数据相匹配,并对所有上行群体进行分类。我们利用这些结果揭示颈部神经连索神经元的解剖学和电路逻辑。我们观察到跨越颈部的DNs和ANs的连接链,这可能有助于运动序列。我们提供了性二态性DN和AN群体的完整描述,并对包括雄性求偶(DNa12;也称为aSP22)和鸣叫产生(来自半系谱08B的AN神经元)以及雌性产卵器伸出(DNp13)在内的生殖行为的选定电路进行了详细分析。我们的工作提供了跨越成年动物整个中枢神经系统的EM水平电路分析。