Ellis Charles A, Sattiraju Abhinav, Miller Robyn L, Calhoun Vince D
Tri-institutional Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30303 USA.
bioRxiv. 2023 May 30:2023.05.29.542700. doi: 10.1101/2023.05.29.542700.
As the field of deep learning has grown in recent years, its application to the domain of raw resting-state electroencephalography (EEG) has also increased. Relative to traditional machine learning methods or deep learning methods applied to extracted features, there are fewer methods for developing deep learning models on small raw EEG datasets. One potential approach for enhancing deep learning performance in this case is the use of transfer learning. In this study, we propose a novel EEG transfer learning approach wherein we first train a model on a large publicly available sleep stage classification dataset. We then use the learned representations to develop a classifier for automated major depressive disorder diagnosis with raw multichannel EEG. We find that our approach improves model performance, and we further examine how transfer learning affected the representations learned by the model through a pair of explainability analyses. Our proposed approach represents a significant step forward for the domain raw resting-state EEG classification. Furthermore, it has the potential to expand the use of deep learning methods across more raw EEG datasets and lead to the development of more reliable EEG classifiers.
近年来,随着深度学习领域的发展,其在原始静息态脑电图(EEG)领域的应用也有所增加。相对于应用于提取特征的传统机器学习方法或深度学习方法,在小型原始EEG数据集上开发深度学习模型的方法较少。在这种情况下,增强深度学习性能的一种潜在方法是使用迁移学习。在本研究中,我们提出了一种新颖的EEG迁移学习方法,即首先在一个大型公开可用的睡眠阶段分类数据集上训练模型。然后,我们使用学习到的表示来开发一个用于通过原始多通道EEG自动诊断重度抑郁症的分类器。我们发现我们的方法提高了模型性能,并且通过一对可解释性分析进一步研究了迁移学习如何影响模型学习到的表示。我们提出的方法代表了原始静息态EEG分类领域向前迈出的重要一步。此外,它有可能在更多原始EEG数据集上扩展深度学习方法的使用,并导致开发更可靠的EEG分类器。