Suppr超能文献

通过利用单通道睡眠阶段数据进行迁移学习来改进基于多通道原始脑电图的重度抑郁症诊断

Improving Multichannel Raw Electroencephalography-based Diagnosis of Major Depressive Disorder via Transfer Learning with Single Channel Sleep Stage Data.

作者信息

Ellis Charles A, Sattiraju Abhinav, Miller Robyn L, Calhoun Vince D

机构信息

Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University, Georgia Institute of Technology, Emory University Atlanta, USA.

出版信息

bioRxiv. 2023 Oct 15:2023.04.29.538813. doi: 10.1101/2023.04.29.538813.

Abstract

As the field of deep learning has grown in recent years, its application to the domain of raw resting-state electroencephalography (EEG) has also increased. Relative to traditional machine learning methods or deep learning methods applied to manually engineered features, there are fewer methods for developing deep learning models on small raw EEG datasets. One potential approach for enhancing deep learning performance, in this case, is the use of transfer learning. While a number of studies have presented transfer learning approaches for manually engineered EEG features, relatively few approaches have been developed for raw resting-state EEG. In this study, we propose a novel EEG transfer learning approach wherein we first train a model on a large publicly available single-channel sleep stage classification dataset. We then use the learned representations to develop a classifier for automated major depressive disorder diagnosis with raw multichannel EEG. Statistical testing reveals that our approach significantly improves the performance of our model (p < 0.05), and we also find that the performance of our approach exceeds that of many previous studies using both engineered features and raw EEG. We further examine how transfer learning affected the representations learned by the model through a pair of explainability analyses, identifying key frequency bands and channels utilized across models. Our proposed approach represents a significant step forward for the domain of raw resting-state EEG classification and has broader implications for use with other electrophysiology and time-series modalities. Importantly, it has the potential to expand the use of deep learning methods across a greater variety of raw EEG datasets and lead to the development of more reliable EEG classifiers.

摘要

近年来,随着深度学习领域的不断发展,其在原始静息态脑电图(EEG)领域的应用也日益增加。相对于传统机器学习方法或应用于人工设计特征的深度学习方法,在小型原始EEG数据集上开发深度学习模型的方法较少。在这种情况下,一种提高深度学习性能的潜在方法是使用迁移学习。虽然已有多项研究提出了针对人工设计的EEG特征的迁移学习方法,但针对原始静息态EEG开发的方法相对较少。在本研究中,我们提出了一种新颖的EEG迁移学习方法,即首先在一个大型公开可用的单通道睡眠阶段分类数据集上训练一个模型。然后,我们使用学到的表示来开发一个用于通过原始多通道EEG自动诊断重度抑郁症的分类器。统计测试表明,我们的方法显著提高了模型的性能(p < 0.05),并且我们还发现我们方法的性能超过了许多先前使用人工设计特征和原始EEG的研究。我们通过一对可解释性分析进一步研究了迁移学习如何影响模型学到的表示,确定了跨模型使用的关键频段和通道。我们提出的方法代表了原始静息态EEG分类领域的一个重要进步,并且对与其他电生理和时间序列模态的使用具有更广泛的意义。重要的是,它有可能在更多种类的原始EEG数据集上扩展深度学习方法的应用,并导致开发更可靠的EEG分类器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7be/10592604/b20b6e04706c/nihpp-2023.04.29.538813v3-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验