Suppr超能文献

基于模型可视化的方法洞察 CNN 学习到的波形和频谱。

A Model Visualization-based Approach for Insight into Waveforms and Spectra Learned by CNNs.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1643-1646. doi: 10.1109/EMBC48229.2022.9871414.

Abstract

Recent years have shown a growth in the application of deep learning architectures such as convolutional neural networks (CNNs), to electrophysiology analysis. However, using neural networks with raw time-series data makes explainability a significant challenge. Multiple explainability approaches have been developed for insight into the spectral features learned by CNNs from EEG. However, across electrophysiology modalities, and even within EEG, there are many unique waveforms of clinical relevance. Existing methods that provide insight into waveforms learned by CNNs are of questionable utility. In this study, we present a novel model visualization-based approach that analyzes the filters in the first convolutional layer of the network. To our knowledge, this is the first method focused on extracting explainable information from EEG waveforms learned by CNNs while also providing insight into the learned spectral features. We demonstrate the viability of our approach within the context of automated sleep stage classification, a well-characterized domain that can help validate our approach. We identify 3 subgroups of filters with distinct spectral properties, determine the relative importance of each group of filters, and identify several unique waveforms learned by the classifier that were vital to the classifier performance. Our approach represents a significant step forward in explainability for electrophysiology classifiers, which we also hope will be useful for providing insights in future studies. Clinical Relevance- Our approach can assist with the development and validation of clinical time-series classifiers.

摘要

近年来,深度学习架构(如卷积神经网络(CNNs))在电生理学分析中的应用不断增加。然而,使用原始时间序列数据的神经网络使得可解释性成为一个重大挑战。已经开发出多种可解释性方法来深入了解 CNN 从 EEG 中学习的频谱特征。然而,在电生理模态中,甚至在 EEG 内部,都有许多具有临床相关性的独特波形。提供对 CNN 学习的波形的深入了解的现有方法的实用性值得怀疑。在这项研究中,我们提出了一种新颖的基于模型可视化的方法,该方法分析了网络第一层卷积层中的滤波器。据我们所知,这是第一种专注于从 CNN 学习的 EEG 波形中提取可解释信息的方法,同时还深入了解学习到的频谱特征。我们在自动睡眠阶段分类的背景下展示了我们方法的可行性,这是一个特征明确的领域,可以帮助验证我们的方法。我们确定了具有不同频谱特性的 3 组滤波器,确定了每组滤波器的相对重要性,并确定了分类器学习的几个对分类器性能至关重要的独特波形。我们的方法代表了电生理学分类器可解释性的重大进步,我们也希望这将有助于在未来的研究中提供深入了解。临床相关性-我们的方法可以帮助开发和验证临床时间序列分类器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验