Ellis Charles A, Sattiraju Abhinav, Miller Robyn L, Calhoun Vince D
Tri-institutional Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States.
bioRxiv. 2023 Feb 27:2023.02.26.530118. doi: 10.1101/2023.02.26.530118.
The application of deep learning classifiers to resting-state electroencephalography (rs-EEG) data has become increasingly common. However, relative to studies using traditional machine learning methods and extracted features, deep learning methods are less explainable. A growing number of studies have presented explainability approaches for rs-EEG deep learning classifiers. However, to our knowledge, no approaches give insight into spatio-spectral interactions (i.e., how spectral activity in one channel may interact with activity in other channels). In this study, we combine gradient and perturbation-based explainability approaches to give insight into spatio-spectral interactions in rs-EEG deep learning classifiers for the first time. We present the approach within the context of major depressive disorder (MDD) diagnosis identifying differences in frontal δ activity and reduced interactions between frontal electrodes and other electrodes. Our approach provides novel insights and represents a significant step forward for the field of explainable EEG classification.
将深度学习分类器应用于静息态脑电图(rs-EEG)数据已变得越来越普遍。然而,相对于使用传统机器学习方法和提取特征的研究,深度学习方法的可解释性较差。越来越多的研究提出了针对rs-EEG深度学习分类器的可解释性方法。然而,据我们所知,没有方法能够深入了解时空频谱相互作用(即一个通道中的频谱活动如何与其他通道中的活动相互作用)。在本研究中,我们首次结合基于梯度和扰动的可解释性方法,以深入了解rs-EEG深度学习分类器中的时空频谱相互作用。我们在重度抑郁症(MDD)诊断的背景下展示了该方法,识别出额叶δ活动的差异以及额叶电极与其他电极之间相互作用的减少。我们的方法提供了新颖的见解,代表了可解释脑电图分类领域向前迈出的重要一步。